EPR EVIDENCE FOR RUTHENIUM VARIABLE VALENCE STATES IN ACTIVE OXIDATIVE CATALYSTS

J. KIWI
Institut de Chimie Physique, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland

and

R. PRINS
Laboratory of Inorganic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Received 14 February 1986; in final form 14 March 1986

Experimental proof is provided by EPR for the presence of Ru$^{3+}$ ions in a RuO$_2$/TiO$_2$ highly dispersed catalyst. A model is proposed for the mode of intervention of Ru$^{3+}$/Ru$^{4+}$ states in oxidative processes.

1. Introduction

The problem of oxygen evolution in the dark is a topic of relevant interest in several laboratories working in the area of the conversion of light to chemical energy [1]. RuO$_2$, having a low overvoltage for oxygen evolution, has already been suitably stabilized on TiO$_2$ [2–6] and has been used as a redox catalyst to mediate O$_2$ evolution in the reaction

$$4\text{Ce}^{4+} + 2\text{H}_2\text{O} \xrightarrow{\text{catalyst}} 4\text{Ce}^{3+} + 4\text{H}^+ + \text{O}_2. \quad (1)$$

This system consists of Ce$^{4+}$ solution in 1 N H$_2$SO$_4$. In reaction (1), when an RuO$_2$/TiO$_2$ particle is in contact with a Ce$^{4+}$-containing solution, the situation developed is similar to an electrocatalyst under anodic bias. The electrochemical potential imposed on the RuO$_2$—TiO$_2$ particle determines the rate of H$_2$O oxidation and Ce$^{4+}$ reduction. On the other hand, catalytic properties originate from the state of the surface species, and the observed oxygen evolution in reaction (1) will depend on the exact nature of these surface sites. The present study examines more closely the nature of the RuO$_2$/TiO$_2$ catalyst by EPR techniques. The interest in such a study is that redox catalysis has been reported to be facilitated by variable valence states [7] encountered on the catalyst surface. But until now, only a few studies have appeared giving evidence for this assumption. Of the few examples known, we could mention studies involving Fe$_2$O$_3$ [8], WO$_3$ [9] and GaAs [10]. Ru$^{3+}$-states in RuO$_2$ as reported in this study lend support to the concept of variable valency being important in the field of redox catalysis.

2. Experimental

The titanium dioxide used was TiO$_2$ Degussa P25 with a surface area of 50 m2/g. RuO$_2$ was deposited on TiO$_2$ P25 by hydrolysis of RuCl$_3$·H$_2$O Alfa Ventron [4]. In order to determine the RuO$_2$ particle diameter, TEM was carried out. The average RuO$_2$ particle diameter had a size of 20 Å ± 15%. This small cluster size is advantageous both from the point of view of mass transport of the active species as well as

We thank Dr. W. Hoffmann, Nukem GmbH Karlstein, FRG for having carried out the TEM on the RuO$_2$/TiO$_2$ samples. The magnification used was 500000.
of surface area per gram of catalyst employed [7]. EPR spectra (X-band) were recorded with a Varian E-15 spectrometer equipped with a TE-104 dual sample cavity and a liquid-helium flow cryostat. An in situ cell was used [11] and the temperature of the sample was kept constant at 10 K with a Cryoson CE 5348 temperature controller. Signal intensity and position were calibrated with the aid of the Varian strong pitch ($g = 2.0028, 3.01 \times 10^{15}$ spins cm$^{-1}$).

3. Results and discussion

The RuO$_2$/TiO$_2$ EPR spectra contained several signals. Fig. 1 shows a Ru$^{3+}$ signal at $g = 2.08$ for a 1.58% RuO$_2$/TiO$_2$ sample. Also a signal at $g = 1.92$ was observed. Such a signal has previously [12] been reported for many noble metal-loaded TiO$_2$ samples and has been assigned to surface Ti$^{3+}$ ions. For the sample presented in fig. 1 (1.58% RuO$_2$/TiO$_2$), the amount of Ru$^{3+}$ shown has been quantified according to the EPR spectrum obtained. The experimental results obtained indicate that 20% of the Ru is present as Ru$^{3+}$. A 3.07% RuO$_2$/TiO$_2$ sample showed the same signal height of Ru$^{3+}$, at a receiver gain which is twice as low, indicating that there is also 20% Ru$^{3+}$ present in this sample. The same holds true for a 0.78% RuO$_2$/TiO$_2$ sample. The signal at $g = 1.98$ in the EPR spectrum (fig. 1) might correspond to O$_2$ on the surface of the RuO$_2$. Similar observations have been reported recently [13].

In the Ru samples one sees the Ru$^{3+}$ state at the surface of the RuO$_2$ particles. It is unlikely that Ru$^{3+}$ will be present as Ru$_2$O$_3$, because in this case the Ru$^{3+}$ ions would be very close together and might couple antiferromagnetically or might broaden the EPR signal dramatically. This was not observed in fig. 1. Although Ru$^{4+}$ is paramagnetic, normally it does not show an EPR signal. The Ru$^{4+}$ ion has a 4d4 configuration and either a strong zero-field splitting and/or a strong relaxation because of the strong coupling between spin and orbital momentum in an orbitally degenerate state, will make it impossible to observe an EPR signal. Therefore all one sees in Ru samples is the Ru$^{3+}$ state.

An increase in catalytic activity [5] has been reported for O$_2$ evolution in reaction (1) and concomitant paramagnetic character of the RuO$_2$/TiO$_2$ samples up to ~4% RuO$_2$/TiO$_2$. The Ru$^{3+}$/Ru$^{4+}$ states responsible for the observed catalysis may find themselves in an even distribution in the RuO$_2$ existing on TiO$_2$. The fact that higher loaded samples of RuO$_2$/TiO$_2$ intervene more favorably in reaction (1) further substantiates the role of Ru$^{3+}$ (existing in 20% abundance) up to 3.07% Ru on TiO$_2$. Since Ru$^{3+}$ and Ru$^{4+}$ are both paramagnetic states [14], it follows that the combined effect of these two states is effective in facilitating the interaction of H$_2$O and Ce$^{4+}$/Ce$^{3+}$ on RuO$_2$/TiO$_2$ dispersions.

Ru$^{3+}$ states in RuO$_2$ structures, as observed in our case, are not surprising [15]. Ru$^{3+}$ states have been detected by optical absorption measurements and correspond to d–d acceptor transitions in this oxide. Ru$^{3+}$ has been reported to be present in fully oxidized Ru-doped TiO$_2$ [15], to compensate for substitutional trivalent impurities.

Such variable-valence ions [16] are often found in materials that occur in non-stoichiometric form and generally involve ionic rather than covalent bonds. Aliovalent Ru$^{3+}$ would then induce a difference in electronic densities on the catalyst surface [7–9], providing density fluctuations favorable for charge transfer [17].

A model is hereby suggested to explain the mode of intervention of the Ru$^{3+}$/Ru$^{4+}$ states in the oxida-
tion process. A high density of charges is set on the oxide surface and dipoles Ru$^6^+$–Ru$^6^-$ are formed with a potential gradient. Electron migration would then take place at potential values > 1.23 V in reaction (1). When water is oxidized, electrons would accumulate on RuO$_2$(Ru$^{4+}$). Such a reaction cannot continue for any length of time, and the Ru$^{3+}$ state will allow the discharge of these electrons, causing Ce$^{4+}$ oxidation. The catalysis taking place will then be regulated by the electrochemical potential of Ce$^{4+}$/H$_2$O couple [6]. The catalysis is then seen to involve a lower oxidation state of Ru. The highly electrostatic Ru$^{4+}$ state may preferentially interact with the less charged water dipole across the double layer. The Ru$^{3+}$ states will then interact with Ce$^{4+}$ ions across this layer. Invoking elementary electrostatic considerations, the system will minimize in this way the energy of repulsion and decrease charge accumulation at the interface.

The existence of Ru$^{3+}$ ions on RuO$_2$/TiO$_2$ also has implications for the Fermi level of the system under consideration. It has been shown that the density of states for metals decreases abruptly above the Fermi level for metals with available d-electrons like: Ru$^{3+}$, Ru$^{4+}$, Pt$^{4+}$, Rh$^{3+}$ [18]. The density of states at the Fermi level for Ru$^{3+}$ (five d-electrons) is expected to be lower than that of Ru$^{4+}$ (four d-electrons) and, as the d-orbitals of the Ru atoms become more occupied (Ru$^{3+}$ state), a smaller number of them would be available to interact with water dipoles as proposed in such a model. This effect has been reported to be important in highly dispersed metals and oxides [19] and Ru$^{3+}$ states, with their characteristic unpaired electrons, would shift the RuO$_2$/TiO$_2$ Fermi level in reaction (1).

A last point to examine is the validity of Ru$^{3+}$ and Ru$^{4+}$ states intervening in reaction (1). Ru has been reported to exist with valence states 3+ to 8+ [20]. Intervention of an Ru$^{2+}$ state is discarded since it is not easy to reduce the initial RuCl$_3$ used to prepare the catalyst [4] to Ru$^{2+}$. The d bands associated with Ru$^{2+}$ ([six d] electrons) [21] are at an energy level that is too high for this to occur. Ru$^{3+}$ [20] on the other hand, is a stable species in strong acid media. Oxidation of Ru to compounds with valence greater than four begins at 1.45 V, the redox potential of the Ce$^{4+}$ ion containing solution [20]. In reaction (1) the corrosion of RuO$_2$ is inhibited by stabilizing it on TiO$_2$ [3,4]. Low initial Ce$^{4+}$ (3.3 \times 10$^{-3}$ M) and RuO$_2$ concentrations (5 \times 10$^{-5}$ M) as used in reaction (1) also make corrosion of a 3.07% RuO$_2$–TiO$_2$ catalyst very unlikely. Therefore, only Ru$^{4+}$/Ru$^{3+}$ states seem to play a role in the catalysis shown in reaction (1). Furthermore, by cyclic voltammetry [22] evidence has been provided for oxygen evolution on RuO$_2$ anodes at a potential of 1.13 versus SCE, a value considerably smaller than 1.45 V versus SCE shown to be necessary to corrode Ru oxides.

In conclusion, RuO$_2$ has been suspected for a long time to have oxidation states affording different valence states intervening in redox processes. This study has provided experimental proof for the existence of two ruthenium states on a RuO$_2$/TiO$_2$ highly dispersed catalyst.

Acknowledgement

Financial support for this work by the Swiss National Science Foundation is appreciated. Some suggestions by M. Grätzel on the manuscript are appreciated.

References