Six-Bar Cognates of a Stephenson Mechanism

E. A. Dijksman*

Received 8 May 1970

Abstract
The paper treats the analogy of Roberts' Law for Stephenson-1 and Stephenson-2 mechanisms. Besides the investigation of cognates producing identical six-bar coupler curves of genus 7, the plural generation of identically moving coupler-planes by alternative six-bar linkages is observed.

Zusammenfassung — Verwandte Sechsgliedrige Gelenkgetriebe der Stephensonschen Mechanismen: E. A. Dijksman.

Summary
Six-bar linkages with the kinematic configuration of the mechanism of Stephenson have been investigated regarding the generation of identical moving coupler-planes and the generation of coupler-curves. The six-bars considered are those in which the fixed link is a binary one. It is shown that the knee-curve may generally be generated by a coinciding turning-joint of three equivalent six-bars of the Stephenson-1 type. Moreover, there is a two-fold generation of each of the two moving links attached to this turning-joint. Special cases are observed and an application on the well-known straight-line linkwork of Hart is given.

It is further shown that each of the binary links connecting the two moving triangles of a Stephenson-2 six-bar mechanism may be generated by two different six-bars of that type. The curve generated by a coupler-point attached to such a link will be produced by four different Stephenson-2 mechanisms. The cognates are also investigated in special cases such as the case where the two moving triangles of the Stephenson-2 mechanism are similar. One may then obtain \(\approx 3 \) different cognates of Watt's form.

In addition, it will be shown that the moving triangle of a Stephenson-2 six-bar, not directly attached to the fixed link, may be generated by three cognates including the

*Senior Research Officer, Eindhoven University of Technology. The Netherlands.
initial one. And the turning joint between this triangle and one of the two binary links referred to above in a Stephenson-2 mechanism, may generally be generated by five different cognates of that type.

Finally, it will be shown that in case this triangle degenerates into a binary link, (at the same time turning a five-sided sub-chain into a four-sided one), a five-fold generation of a curve produced by any coupler-point attached to the binary link will occur.

1. Introduction

In 1846 Robert Stephenson designed a link reversing gear in order to control the motion of a steam engine. At the time, the mechanism was everywhere used as a valve gear for locomotives. Although the actual mechanism of Stephenson had very specific dimensions. Burmester[1] in 1888 associated the name of Stephenson to any linkage of this kind. The kinematic configuration of such a linkage, named after Stephenson, is shown in Fig. 1. It is a six-bar linkage with a five-sided loop and a four sided loop as two independent sub-chains.

Figure 1. Stephenson's form.

Nowadays, only historical value can be attached to the fact that Stephenson made bar 5 the body (frame-work) of the locomotive. (The mechanism obtained by this choice of frame is now commonly called a Stephenson-2 mechanism.) Successively choosing other bars as frame, one obtains no more than three essentially different mechanisms (see Fig. 2). Of these, the one with three pivot centers on the frame has already been investigated by Rischen[2], who found six mechanisms of this type with the same six-bar curve, generated by point E of the mechanism. All six mechanisms having the same configuration of Stephenson and all having three pivot centers on the frame are called cognates.

The name cognate was first introduced by Hartenberg and Denavit in their paper[10, 11] on "cognate linkages," with respect to alternative four-bar mechanisms, coupler-points of which trace identical coupler curves. The name was coined in connection with the three alternative linkages appearing in the well-known theorem of Roberts-Chebyshev. Hartenberg and Denavit also extended the meaning of cognition to special forms of six-bar linkages. It is for this reason, that the writer of the present paper took the liberty to do likewise, even in those cases where there is no restriction on the link lengths of the sixbars of the linkage.

Since Roberts[12] discovered the existence of alternative linkages in the case of four-bars, many authors, including Cayley[13], Schor[14], Meyer zur Capellen[15] and de Jonge[16] have occupied themselves with this theorem. Each of them has found another proof of Roberts' Law, and accordingly the number of proofs has steadily increased and a situation has been arising that is similar to the one which developed around the proposition of Pythagoras at one time.

According to the spirit of these times, however, (with the ever-growing attention given to the practical use of the computers and so on) most of these efforts have been in the range of analytical treatment in contrast to the geometrical way of finding four-bar cognates, as originally practised by Roberts.

It was, maybe, for this reason, that nobody paid much attention to a new geometrical proof of Roberts' Law, as given by H. Pflieger-Haertel[17] during the 2nd World War. Although he was the first to use the
principle of stretch-rotation in this matter, he also hesitated to rely on it entirely and therefore added a proof based on a known derivation in complex numbers.

Also, in a paper [18] about parallel moving bars a proof of Robert’s Law, based on the principle of stretch-rotation, has been given.

In the paper presented here, the geometrical principle of stretch-rotation is entirely relied on, and the application of this principle has been extended to six-bar linkages of Stephenson’s form.

It may be emphasized, therefore, that in spite of the existence of computers, the quickest way to find the cognates of such forms follows the classic treatment of geometry, although I am sure that, once we know of their existence, other, analytical, proofs may be found with which the designer will be enabled to calculate the dimensions of the cognates with the help of those same computers.

Finally, it is thought necessary to emphasize a fact which is probably not recognized, that the proofs of the existence of the six-bar cognates of Stephenson’s form are also given in this paper by means of the principle of stretch-rotation: the presentation given here provides not only the way of finding cognates, but also simultaneously the proof, that the given statements are true.

In addition to the investigation of Rischen, we are interested in the number of cognates with regard to the remaining types, viz. the Stephenson-1 and the Stephenson-2 mechanism. Further, we want to know how to design such alternative mechanisms. Thus, from the Stephenson-1 mechanism, for example, we investigate the multi-generation of the curve produced by an arbitrarily chosen point \(E \) in the moving plane \(5 \). Each mechanism of the Stephenson-1 type which is able to generate the identical six-bar curve, will then be called a cognate of the initial mechanisms. A similar assumption will hold for cognates of the Stephenson-2 type. It is, however, important to include in such denominations of cognates an indication of the link to which the generating point is going to be attached; for, generally, it is not possible to generate the same curve by different Stephenson-2 (or -1) mechanisms if the generating point \(E \) is not attached to similarly situated links in the mechanisms.

In order to investigate essentially different cases, it must be clear that only the plane \(5 \) of a Stephenson-1 mechanism is of interest (The investigation of cognates generating the identical six-bar curve produced by a point of plane 4 may be done in a similar way). A Stephenson-2 mechanism, however, has two links, viz. the links 2 and 3, which play an interesting part in our search for cognates.
2. The Two-Fold Generation of the Moving Plane 5 of a Stephenson-1 Mechanism and the Three-Fold Generation of the Knee-Curve*

The initial Stephenson-1 mechanism consists of the five-bars \(O_A F D C B_O \), \(F A B C D \), the four-bar \(\square A_0 A B B_0 \) and the rigid triangles \(\triangle A_0 A F, \triangle B_0 B C \), and \(\triangle F D E \) (see Fig. 3). The curve described by point \(D \) of the mechanism is called the knee-curve which is an algebraic curve of order 14 and genus 7. It will be shown that this curve may be generated by three different Stephenson-1 mechanisms. The curve generated by a point \(E \) of the moving plane 5 may be generated by not more than two different Stephenson-1 mechanisms. It will also be shown that the two last mentioned cognates generate the entire moving plane 5. According to Fig. 4 the design for such an alternative six-bar mechanism may be obtained in the following way.

(a) Form the linkage parallelograms \(A B C B' \) and \(A B B_0 B' \).

(b) Turn the four-bar \(A_0 A B B_0 \) about \(A \) through the angle \(\alpha = \angle B' A B = \angle B A B_C \) and multiply the four bars in size simultaneously from \(A \) by the factor \(f_A = B'A/BA = CB/B'B_0 \).

(c) One obtains the four-bar \(\square A_0 A B' B_0 \sim \square A_0 A B' B_0 \).

(d) One now forms the rigid quadrilateral \(F A A_0 A_0' \) and the rigid triangle \(\triangle B' B_0 C \) which is similar to \(\triangle B C B_0 \) (The corresponding links of the four-bars \(A_0 A B' B_0' \) and \(A_0 A B' B_0 \) move at the same angular velocity at any time. The opposite sides of the parallelogram \(A B' C B \) move also at identical angular velocities. Therefore, so do the links \(B'B_0' \) and \(B'C \). Since they also have a turning-joint \(B' \) in common, both links belong to the same moving plane 2' and \(\triangle B' B_0 C \) is a rigid triangle. The same may be said of \(\triangle A B' B_0 \). By agreement we further state that: If at any time two non-identical moving planes have the same angular velocity, such planes will bear the same figure, and the non-identity will be indicated by different numbers of primes attached to the figure).

(The author uses the term "five-bar" to mean what is more usually called "five-sided, or pentagonal, loop"; similarly "four-bar" signifies a "quadrilateral loop".)
Figure 4. The two-fold generation of plane 5 of a Stephenson-1 mechanism.

(e) Next turn the two five-bars $\triangle FAB'CD$ and $\triangle FA_0B_0'CD$ about F through the angle $\beta = \angle A_0FA'$ and multiply the five-bars in size simultaneously by the factor $f_0 = FA_0/FA'$.

(f) One thus obtains a new six-bar consisting of the five-bars $\triangle FA'B'C'D'$ and $\triangle FA_0B_0'C'D''$, the four-bar $\square A_0A'B'B_0'$ and the rigid triangles $\triangle A_0FA''$, $\triangle B_0'B''C''$, and $\triangle FD'E$. In this six-bar, point B''_0 is a second pivot center on the frame of the alternative mechanism (see also Fig. 5). Like the initial one, the six-bar thus found has one degree of freedom of movement. It has also a configuration similar to a Stephenson-1 mechanism. Therefore it may be called a Stephenson-1 cognate. The cognate

Figure 5. The two-fold generation of plane 5 of a Stephenson-1 mechanism.
thus found produces the same moving plane 5 as the initial one. That is to say, any generating point of plane 5 will be produced by both mechanisms and the generating points of the two mechanisms are coincident points at every point of time. So both points will generate the identical curve.

2.1 General account of the presented design

A linkage mechanism consists of several closed kinematic sub-chains or loops. For instance, the Stephenson-I mechanism has two five-bars and one four-bar.

These sub-chains, however, may be seen as closed vector polygons, which can be represented by equivalent vector equations.

Let the vector equation

$$a_1 + a_2 + a_3 = 0$$

represent the four-bar A_0ABB_0, and

$$b_1 + b_2 + b_3 + b_4 + a_0 = 0$$

represent the five-bar A_0FDCB_0 (see Figs. 4 and 5.) (The order of these vectors may not be interchanged, otherwise other linkages are represented. For instance, the equation $a_1 + a_3 + a_2 + a_0 = 0$ represents the four-bar $A_0AB'B_0$). Then the equation

$$(b_1 - a_1) + b_2 + b_4 + (b_3 - a_3) - a_2 = 0$$

represents the second five-bar $AFDCB$.

It is clear that the last equation is not independent of the first two. Therefore, we say that a Stephenson-I mechanism consists of two independent sub-chains, viz. a four-bar and a five-bar.

If we multiply* equation (1) by the constant complex number b_3/a_3 and subtract the result from (2), we get

$$b_1 - (b_3/a_3)a_1 + b_2 + b_4 - (b_3/a_3)a_2 + a_0(1 - b_3/a_3) = 0$$

which is a five-bar of the form

$$c_1 + b_2 + b_4 + c_3 = 0.$$

(4a)

This represents the five-bar $A_0'FDCB_0$ (see Fig. 4).

Interchanging the sequence of the bars in the kinematic chain represented by equation (3), means a permutation in the sequence of the terms in this equation.

Therefore, the equation

$$(b_1 - a_1) + b_2 + b_4 - a_2 + (b_3 - a_3) = 0$$

represents the five-bar $AFDCB'$.

Both five-bars represented by the equations (4) and (5) are independent of each other. If we subtract the left-hand side of (5) from (4), we obtain the vector equation of

* Here the center of similitude coincides with turning-joint A.

the four-bar $A_0A'B'B_0$
\[a_1(1 - b_3/a_3) + (a_3 - b_3) + a_2(1 - b_3/a_3) + a_0(1 - b_3/a_3) = 0. \tag{6}\]

The link $A_0B'_0$ of the five-bar (4) and of the four-bar (6), however, is only a translating link. It can be made a fixed link if we multiply the left-hand sides of (4), (5) and (6) by the complex number $b_1/(b_1 - (b_3/a_3)a_3)$, for then the point A'_0 of the link $A_0B'_0$ which is already only translating, transforms itself into the fixed center A_0. And so the cognate Stephenson-1 mechanism will be obtained. The center of similitude of the last multiplication coincides with turning joint F. Therefore, the transformed moving planes 1 and 5 remain attached to the initial ones.

The multiplied five-bar (4), for instance, will then contain the vector b_1 again, that is the bar A_0F, of the initial mechanism. Thus, the dyad A_0FE is a common dyad to both cognates.

The fact that no other cognates for the generation of the curve produced by point E exist, will be proved by indirect demonstration (reductio ad absurdum).

The generating point E is connected with the fixed center A_0 through the dyad A_0FE. This dyad is represented by the vector sum $(b_3 + d_5)$. It is not possible to find a cognate by interchanging the terms in this vector sum. This is due to the fact that a four-bar linkage of which the sides move parallel to the respective planes 0, 2, 3 and 5, cannot be composed. Likewise, it is prohibited to interchange the moving planes 3 and 4. And lastly, the fixed link 0 may never be interchanged, since, generally, no other moving plane of the initial mechanism moves parallel to the fixed link.

We assume that in a supposed cognate, point E has to be connected with the fixed link through some dyad. Instead of going through all the arising possibilities we just take one dyad and prove that such an arbitrarily chosen combination cannot be effectuated. Suppose, then, that the dyad that connects point E of the cognate with the fixed link, is represented by the vector sum $(e_3 + e_4)$. Here, e_3 is a vector moving parallel to a fixed line in plane 3, and e_4 moves parallel to plane 4. Although the fixed center does not necessarily coincide with A_0 or B_0 we may nevertheless indicate a hexagon of which the triad B_0CDE takes a part.

So we may write
\[e_0 + e_3 + e_4 + (b_3 - d_3) + b_4 + b_3 = 0\]
or by interchanging the terms through making use of linkage parallelograms, we get the four-bar
\[e_0 + (e_3 + b_3) + (e_4 + b_4) + (b_5 - d_5) = 0.\]

Since it is not possible to design a four-bar with links moving parallel to the planes 0, 3, 4 and 5, we encounter a contradiction. Therefore, the assumption made that the dyad mentioned may be represented by the vector sum $(e_3 + e_4)$, is not valid.

In this way going through all other combinations we find that, unless E coincides with D, there is only one dyad possible, viz. the dyad $b_1 + d_5$, the one used in the cognate already found.

In the case that E coincides with turning joint D, we may also consider this point a generating point of the moving plane 4. Since the latter takes a similar position in the Stephenson-1 mechanism, we may also interchange the planes 1 and 2 instead of the
planes 3 and 2 as was done for the preceding cognate. We thus obtain another cognate for the knee-curve as demonstrated in Fig. 6. So all in all there are three cognates generating the knee-curve.

Figure 6. Two, out of three, cognates for the knee-curve.

From the design shown in Fig. 4 we derive that

\[\square F A''B''C''D'' \sim \square F A B' C D \quad \square F A''_0B'_0C''D'' \sim \square F A_0B_0C D \]

and

\[\square A_0A''B''B'_0 \sim \square A_0A B'_0B'' \]

It also follows that

\[\triangle F A A'' \sim \triangle F A_0A_0 \sim \triangle F D D'' \]

and

\[\triangle C''B''B'_0 \sim \triangle B_0B C \sim \triangle A_0A_0 \]

Similarly, Fig. 6 demonstrates that

\[\triangle F \triangle A''A_0 \sim \triangle A_0A F \]

2.2 Special case where \(\triangle A_0A F \sim \triangle B_0B C \)

In this case \(A''_0 = F \) and the preceding design collapses. So another approach is adopted at the point where first the second multiplication could not be brought into effect. The design for this case may be carried out with the following instructions (see Fig. 7):

(a) Form the linkage parallelograms \(ABC'B', ABB'B', A F E F', A_0F D F \triangle \) and \(B_0C D C' \).

(b) Turn the four-bar \(A_0A'B'B_0 \) about \(A \) through the angle \(\alpha = \angle B'A'B' = \angle B_0B C = \angle A_0A F \) and multiply the size of the four-bar geometrically from \(A \) by the factor \(f' = B'A/B'A = CB/B_0B = FA/A_0A \).
Figure 7. Special case of the Stephenson-1 mechanism with $\triangle A_0 AF \sim \triangle B_0 BC$.

(c) One obtains the four-bar $\square FAB'B_0'' \sim \square A_0 AB'B_0$.

(d) One forms the rigid triangle $B'B'C \sim \triangle BCB_0 \sim \triangle AFA_0$.

(e) Next, one forms the linkage parallelogram B_0FDF'.

(f) Then, turn the five-bar $\bigcirc A_0 F \triangle DC'B_0$ about A_0 through the angle $\beta = \angle DFE = \angle F \triangle A_0 F''$ and multiply the size of the five-bar geometrically from A_0 by the factor $f_\beta = EF/DF = F''A_0/F\triangle A_0$.

(g) One obtains the five-bar $\bigcirc A_0 F''D''C''B_0'' \sim \bigcirc A_0 F\triangle DC'B_0$.

(h) Form the rigid triangle $\triangle D''F''E \sim \triangle EFD$.

(i) Make the four-bar $\square A_0 B_0''B''A'' \sim \square F'DCB_0$.

(j) Form the rigid triangles $F''A_0 A''$ and $C''B_0''B''$.

The cognate obtained consists of the five-bars $\bigcirc A_0 F''D''C''B_0''$, $\bigcirc A''F''D''C''B''$, the four-bar $\square A_0 B_0''B''A''$ and the rigid triangles $\triangle A_0 F''A''$, $\triangle B_0''C''B''$ and $\triangle D''F''E$ (see also Fig. 8).

In order to justify the correctness of the above result, it is sufficient to prove that the triangles to be indicated as rigid triangles are rigid indeed. In all cases arising, this may be done by proving that two sides of such a triangle are moving at identical angular velocity.

With regard to the geometric properties of the cognate obtained, one can prove that $\triangle A_0 F''A'' \sim \triangle AFA_0$, and likewise that $\triangle B_0''C''B'' \sim \triangle BCB_0$. Thus

$$\triangle A_0 F''A'' \sim \triangle B_0''C''B''.$$

So we see that for the initial mechanism as well as for the cognate one, the two triangles rotating about a fixed center are similar.
Figure 8. Special case of the Stephenson-1 mechanism with \(\triangle A_oAF \sim \triangle B_oBC \).

We also find that

\[
\triangle D''F''E \sim \triangle EFD \sim \triangle B_o''A_oB_o.
\]

2.2.1. Application on a straight-line linkwork of Hart. An exact straight-line linkwork of Hart[4], which is a special case of the mechanism of Kempe[5], which is also called the focal mechanism of Burmester[6], may be seen as a Stephenson-1 mechanism for which \(\triangle A_oAF \sim \triangle B_oBC \). The four-bar \(A_oABB_o \) in this linkwork (see Fig. 9) is chosen arbitrarily.

Figure 9. Two straight-line linkworks of Hart in cognation.
We took $A_0A = 1$, $AB = 4$, $BB_0 = 3$ and $A_0B_0 = 5$. The remaining dimensions of the linkwork were calculated from formulae obtained by Wunderlich[7], and so we got $A_0F = 25/9$, $B_0C = 75/9$, $FD = 20/3$ and $CD = -20/9$. The initial linkwork of Hart so consists of the five-bars A_0FDCB_0, $AFDCB$ and the four-bar A_0ABB_0. The knee-curve generated by point D is in this case an exact straight line perpendicular to the frame-line A_0B_0. Moreover, the angle $\angle A_0FD = \angle B_0CD$ as shown by Kempe.

If we apply the design procedure of the preceding section to this linkwork, we obtain the six-bar cognate consisting of the five-bars $A_0F"D"C"B_0$, $A"F"D"C"B$ and the four-bar $A_0A"B"B_0$.

It follows from the design that $\Box A_0FDF"$ and $\Box B_0CDC"$ are linkage parallelograms. It may be proved that $A"B$ lies parallel to AB at any time. Further, one finds that the points D, A and $A"$ are always in line, and the same is true for the points D, B and $B"$. We see that the cognate linkwork is also an exact straight-line linkwork of Hart, thus connected with the initial one (see Fig. 9).

In addition, we observe that the cognate linkwork may also be obtained by making the coupler AB of the initial linkwork the fixed link instead of A_0B_0, by simultaneously multiplying the entire linkwork by the factor CD/AF and, finally, by turning the linkwork thus obtained about some straight axis in the plane around by π radians. This proves that the turning joint D of the initial mechanism also moves along a straight line perpendicular to the coupler AB[7].

3. The 4 Cognates for a Stephenson-2 Mechanism with Respect to a Point E of Plane 2

3.1. The two-fold generation of plane 2 and the 3/4-cognate for that plane

The initial Stephenson-2 mechanism consists of the five-bars A_0ABCC_0, A_0FDCC_0, the four-bar $\Box ABDF$ and the rigid triangles $\triangle A_0AF$, $\triangle BCD$ and $\triangle FDE$. The centers of pivot on the frame in this mechanism are the points A_0 and C_0 (see Fig. 10). Design instructions for what is called the 3/4-cognate are as follows (see Fig. 11):

(a) Form the parallelograms $ABDB'$ and $ABC'B$.
(b) Turn the five-bar $\Box A_0AB'C'C_0$ about A through the angle $\alpha = \angle B'BAB' = \angle CBD$ and multiply the five-bar geometrically from A by the factor $f_\alpha = B'A/B'A = DB/CB$.
(c) One obtains the five-bar $\Box A_0A'BC'C_0 \sim \Box A_0AB'C'C_0$ and the rigid triangles $\triangle A_0A_0A'$ and $\triangle B'C'D$.
(d) Next, turn the five-bar $\Box FA_0C_0C'D$, together with the four-bar $FAB'D$ about F through the angle $\beta = \angle A_0FA_0$ and multiply both geometrically from F by the factor $f_\beta = FA_0/FA_0$.
(e) One thus obtains the five-bar $\Box FA_0C_0C'D'' \sim \Box FA_0C_0C'D$ and the four-bar $\Box FA''B''D''$.
(f) Lastly, form the rigid triangles $\triangle A_0A''F$, $\triangle B''C''D''$, $\triangle FD''D$ and $\triangle FD''E$.

Figure 10. Initial Stephenson-2 mechanism.
Figure 11. The 3/4-cognate of a Stephenson-2 mechanism for plane 2.

One recognizes the cognate six-bar, consisting of the five-bars $\triangle A_0 A'' B'' C'' C''_0$. $\square A_0 F D'' C'' C''$, the four bar $\square A'' B'' D'' F$ and the rigid triangles $\triangle A_0 A'' F$, $\triangle B'' C'' D''$, $\triangle F D'' D$ and $\triangle F D'' E$.

The cognate obtained has the same kinematic configuration as a Stephenson-2 mechanism (see Fig. 12). The angular velocities of the links in the cognate can at any time also be observed in the initial mechanism. With the exception of the angular velocities of the links 3 and 4, they are distributed in the same way among the links as is the case with the initial mechanism. One finds that only the angular velocities of the links 3 and 4 have been interchanged in the cognate. Therefore, the cognate is called a 3/4-cognate for short.

The other thing one observes is that the entire plane 2 of the initial mechanism is generated by the 3/4-cognate. Thus a two-fold generation of the moving plane 2 exists. A six-bar curve produced by any point E of this plane will then be generated by both cognates. The same holds for turning joint D of the initial mechanism (see Fig. 12). One notes also that the dyad $A_0 F E$ is always common to the initial and to the 3/4-cognate.

The geometric properties of the 3/4-cognate may be derived through the following observations (see Fig. 11):

$$\triangle A A_0 A_0' \sim \triangle B' D C' \sim \triangle B C D \sim \triangle B'' D'' C''.$$

From (d) we derive that

$$\square F A_0 C'' D'' \sim \square F A_0 C'' D$$ and $\square F A'' B'' D'' \sim \square F A B' D$.

Figure 12. The 3/4-cognate of a Stephenson-2 mechanism for plane 2.
Further we see that
\[\triangle F A' A_0 \sim \triangle F A A'' \sim \triangle F D D'' \] and thus \[\triangle F A A' A_0 \sim \triangle F A A'' A_0. \]

Moreover,
\[\angle (AA', AA_0) = \beta \quad \text{and} \quad \angle A_0 A A_0' = \alpha. \]

Thus
\[\angle A A_0 A'' = \alpha + \beta = \angle C_0 A_0 C''_0. \]

Finally:
\[\frac{A_0 C_0}{A_0' C_0'} = \frac{A_0 C_0'}{A_0' C_0'} = f_{A_0}^{-1} \cdot f_{A_0'}^{-1} = \frac{A_0 A' A_0 A''}{A_0 A''} = \frac{A_0 A}{A_0 A''}. \]

Therefore, we conclude that
\[\triangle A_0 A A'' \sim \triangle A_0 C_0 C''_0. \]

In the special case where \(\triangle F D E \sim \triangle F A'' A_0' \), we have that \(E \equiv D'' \), in which case the generating point \(E \) becomes a turning joint of the 3/4-cognate.

In the special case where \(\triangle A_0 A F \sim \triangle C B D \), one finds that \(A_0' = F \). In that case instruction (d) can no longer be followed. Cognates may then be obtained as in the Sections 3.2.1 and 3.3.1. One finds a total number of \(\infty^2 \) cognates in this case.

3.2. The 1/2-cognate of a Stephenson-2 mechanism (with \(E \) a point of plane 2)

The initial mechanism being the same as in the preceding section, the design instructions for what is called the 1/2-cognate are (see Fig. 13):

![Figure 13. The 1/2-cognate of a Stephenson-2 mechanism.](image)
(a) Form the parallelograms $A_0 F E F', A_0 F D F$ and $A F D F'$.

(b) Turn the five-bar $A_0 F E D C C_0$ about A_0 through the angle $\alpha' = \angle F A_0 F = \angle E F D$ and multiply the five-bar geometrically by the factor $f_\alpha = F' A_0 F$. Thus $\bigtriangleup A_0 F D' C'' C_0'' \sim \bigtriangleup A_0 F E D C C_0$.

(c) Form the rigid triangles $\bigtriangleup A_0 C' C_0$ and $\bigtriangleup D' F E$.

(d) Make $\square A'' B'' D' F' \sim \square A B D F$.

(e) Form the rigid triangles $\bigtriangleup C'' B'' D'$ and $\bigtriangleup A'' F' A_0$.

The cognate obtained consists of the five-bars $\bigtriangleup A_0 A'''' B'''' C''' C_0''''$, the four-bar $\square A'' B'' D' F'$ and the rigid triangles $\bigtriangleup A_0 A'' F'$, $\bigtriangleup B'''' C'' D'$ and the coupler-triangle $\bigtriangleup D' F' E$. The alternative mechanism has the same kinematic configuration as the initial mechanism and is therefore a cognate Stephenson-2 mechanism. Here, only point E of the cognate generates the identical six-bar curve.

When one observes the distribution of angular velocities in the cognate obtained, one sees that only the angular velocities of the links 1 and 2 of the initial mechanism have interchanged. Therefore, the cognate is called a $1/2$-cognate for short (see Fig. 13).

The geometric properties derived from the figure are obtained in the following way:

From (b) it follows that

$$\bigtriangleup C_0 A_0 C_0 \sim \bigtriangleup E F D \sim \bigtriangleup D' F' E.$$

Since $\angle A'' F' A_0 = \angle A_0 F A$ and

$$\frac{A'' F'}{F' A_0} = \frac{A'' F'}{D' F'} \cdot \frac{D' F'}{E F} = \frac{D' F'}{F A} \cdot \frac{F' E}{E F} = \frac{F E}{F A} = \frac{A_0 F}{F A},$$

we find that

$$\bigtriangleup A'' F' A_0 \sim \bigtriangleup A_0 F A.$$

Since $\angle (D' C'''', D C) = \alpha'$ and $\angle (B D, B'' D') = \alpha' + \pi - \angle A'' F' A_0$ we have $\angle B'' D' C''' = 2\pi - (\angle B D C + \angle A_0 F A)$.

Moreover,

$$\frac{B'' D'}{C''' D'} = \frac{B'' D'}{F' D'} \cdot \frac{F' D'}{A_0 F} \cdot \frac{C''' D'}{C D} = \frac{A_0 F}{C D} \cdot \frac{A_0 F}{F A}.$$

Hence, if $\bigtriangleup B'' C'' D' \sim \bigtriangleup B C D$ and $B'' \equiv A$ and $D' \equiv F$ we find that

$$\bigtriangleup B'' D' C''' \sim \bigtriangleup A_0 F C.$$

See also Fig. 13.

3.2.1. Special case, where $\bigtriangleup A_0 A F \sim \bigtriangleup B C D$. In this case we find that $A_0 = C$ and so $B'' = C'''$. So point B'' of the $1/2$-cognate describes a circle about the fixed centre C_0'''. One thus obtains a cognate of a special form, consisting of $\bigtriangleup A_0 F D' C'' C_0'''$. $\square A_0 A'' C''' C_0''''$. $\square A''' C'' D' F'$ and the coupler triangle $\bigtriangleup F' D' E$ (see Fig. 14). Such an alternative mechanism may be regarded as a special form of Stephenson-2, but also as a special mechanism of Watt's form. In addition, we know [8] that for a mechan-
ism of Watt's form, the entire moving plane in which point E is fixed, may be generated by ∞^2 different mechanisms of Watt's form. See for example the cognate obtained in Fig. 15, where point E is made a turning joint between the moving links $F'E$ and $B'E$ (This cognate consists of the four-bars $\square A_0 A^\gamma C^\gamma C_0^\gamma$, $\square F' EB^\gamma A^\gamma$ and the rigid triangles $\triangle A_0 F'A^\gamma$ and $\triangle A^\gamma B^\gamma C^\gamma$).

The cognate obtained is a special one, because $\delta = \angle D'F'E$ and $f_8 = F'E/F'D'$.

Should other values for δ and f_8 be chosen, one of the ∞^2 different cognates should be obtained.
3.3. The 1/2-3/4 cognate of a Stephenson-2 mechanism (with E a point of plane 2)

Starting with the same initial mechanism as in the preceding Sections 3.1 and 3.2, the design instructions for the cognate presented here are (see Fig. 16):

(a) Form the linkage parallelograms A_0FEF', $ABDB'$ and $ABCB'$ and also the rigid triangle $\triangle AB'B'$.

(b) Turn the four-bar $\square AB'DF$ about A through the angle $\alpha = \angle B'AB' = \angle CBD$ and multiply the four-bar geometrically from A by the factor $f_\alpha = B'A/AB = CB/DB$.

(c) One obtains the four-bar $\square AB'D^\Delta F^\Delta \sim \square AB'DF$.

(d) Form the rigid triangles $A_0A^\Delta F^\Delta$ and $CB^\Delta D^\Delta$.

(e) Form the linkage parallelogram $A_0F^\Delta D^\Delta F^\Delta$ and the rigid triangle $F'A_0F^\Delta$.

(f) Turn the five-bar $\bigcirc A_0F^\Delta D^\Delta CC_0$ about A_0 through the angle $\gamma = \angle F'A_0F^\Delta$ and multiply the five-bar geometrically from A_0 by the factor $f_\gamma = F'A_0/F'A_0 = EF/DB$.

(g) One obtains the five-bar $\bigcirc A_0F^\Delta D^\Delta CC_0 \sim \bigcirc A_0F'F^\Delta CC_0$.

(h) Form the rigid triangles $\triangle A_0C_0C_0$ and $\triangle D^\Delta E$.

Figure 16. The 1/2–3/4 cognate of a Stephenson-2 mechanism.
(i) Make the four-bar \(F'D'B'A' \sim \square FABD. \\

(j) Form the rigid triangles \(B'C'D \) and \(A'oA'F' \).

The alternative six-bar obtained consists of the five-bars \(\bigtriangleup A'oF'D'C'o \) and \(\bigtriangleup A'oA'B'C'o \), the four-bar \(\square A'B'DF' \) and the rigid triangles \(\bigtriangleup B'C'D' \), \(\bigtriangleup A'oA'F' \) and the coupler triangle \(\bigtriangleup D'E'E \).

The alternative six-bar has a kinematic configuration similar to the initial mechanism and may therefore be called a Stephenson-2 cognate. Here, only point \(E \) of the cognate generates the initial six-bar curve produced by the initial Stephenson-2 mechanism.

The angular velocities of the links 1 and 2 and also those of the links 3 and 4 are interchanged when one compares the distribution of angular velocities in the obtained cognate with the distribution in the initial six-bar. Therefore, the cognate is called a 1/2-3/4-cognate (see Fig. 17).

The geometric properties of this cognate may be obtained from Fig. 16 in the following way.

Figure 17. The 1/2-3/4 cognate of a Stephenson-2 mechanism.
From

\[
\frac{A'F'}{F'A_0} = \frac{A'F'}{DF} \cdot \frac{DF}{F'A_0} = \frac{D'F'}{D'F} \cdot \frac{D'F}{AF} \cdot \frac{DF}{F'A_0} = \frac{F'A_0}{AF} \cdot \frac{F'A_0}{F'A_0} \cdot \frac{DF}{F'A_0}
\]

\[
= \frac{DF}{D'F} \cdot \frac{F'A_0}{AF} \cdot \frac{F'A_0}{AF} = \frac{F'A_0}{AF} \cdot \frac{F'A_0}{AF} \cdot \frac{F'A_0}{AF}.
\]

and the fact that \(\angle A'F'A_0 = \angle A_0F'A_0 \).

We derive that

\[
\angle A'F'A_0 \sim \angle A_0F'A_0.
\]

From the same figure we also have

\[
\angle F'A_0F' \sim \angle C_0A_0C_0 \text{ with } \gamma = 2\pi - (\angle EFD + \angle DBC).
\]

Since also

\[
\frac{F'A_0}{A_0F'} = \frac{EF}{FD} \cdot \frac{FD}{F'D} = \frac{EF}{FD} \cdot \frac{BD}{BC},
\]

we find that

\[
\angle EFC^b \sim \angle F'A_0F'
\]

as long as

\[
\angle B'C^bD^b \sim \angle BCD \text{ with } D^b = D \text{ and } B^b = F.
\]

Thus \(\angle C_0A_0C_0 \sim \angle EFC^b \) (see Fig. 16A).

From Fig. 16 we see that

\[
\angle AF^\Delta F \sim \angle BCD \sim \angle B^bD^\Delta C
\]

with step \(g \) of the design instructions we have

\[
\frac{D^bC^b}{D^\Delta C} = \frac{EF}{FC^b}.
\]

Moreover,

\[
\frac{D^bB^b}{AB} = \frac{D^bF'}{D^\Delta F} \cdot \frac{D^\Delta F'}{AF} = \frac{EF}{FC^b} \cdot \frac{F'A_0}{AF}.
\]

Hence,

\[
\frac{D^bC^b}{D^bB^b} = \frac{D^\Delta C}{AB} \cdot \frac{AF}{F'A_0} = \frac{CD}{BD} \cdot \frac{AF}{F'A_0} = \frac{F'A_0}{F'A_0}.
\]
On the other hand, one may observe that
\[\angle (D^\Delta B, AB) = \angle (F^*D^\Delta, FA) = -\gamma + \angle (F^*D^\Delta, FA) \]
\[= -\gamma + \angle (A_0 F^\Delta, FA) \]
and
\[\angle (D^\Delta C^*, AB) = -\gamma + \angle (D^\Delta C, CB^*) = -\gamma + \angle (F^\Delta F, FA). \]
Thus \(\angle B^*C^*D^* = \angle A_0 F^\Delta F^* \).

And so, finally, we have
\[\triangle B^*C^*D^* \sim \triangle A_0 F^\Delta F^*. \]
Since
\[\frac{EF'}{D^*F'} = \frac{FA_0}{D^\Delta F^*} \cdot \frac{D^\Delta F^*}{D^*F'} = \frac{FA_0}{F^\Delta A_0} \cdot \frac{F^*A_0}{F^\Delta A_0} \]
and \(\angle EF'D^* = -\angle F^\Delta A_0 F + (2\pi - \gamma) = \angle FA_0 F', \) we conclude that
\[\triangle EF'D^* \sim \triangle FA_0 F'. \]

Here, the point \(F' \) is defined by the relationship \(\triangle A_0 F^\Delta F' \sim \triangle A_0 F^*F' \sim \triangle FC^bE \) (see Fig. 16B).

For the particular point \(E \) defined by the relation \(\triangle FDE \sim \triangle BDC \), one finds that \(E = C^b. \) Then \(\gamma = 0 \) and \(f_\gamma = 1. \)

Consequently
\[C_0^* = C_0, \]
\[C^* = C, \]
\[D^* = D^\Delta, \]
\[F^* = F^*. \]
Thus
\[\frac{A_0 F^*}{CD^\Delta} = \frac{F^\Delta D^\Delta}{CD^\Delta} = \frac{F^\Delta D^\Delta}{BA} \cdot \frac{DB}{BA} = \frac{FD}{BD} \cdot \frac{CB}{BD} = \frac{DF}{BA} \cdot \frac{CB}{CD} = \frac{A^*F^*}{B^*D^\Delta} \cdot \frac{CB}{CD}. \]
Moreover \(\triangle F'ED^\Delta \sim \triangle A_0 F^\Delta F \sim \triangle B^*CD^\Delta. \)

In this particular case, therefore, the "coupler-point" \(E \) of the 1/2-3/4 cognate is defined in a way similar to the one in the initial six-bar (see Fig. 18).

3.3.1. Special case, where \(\triangle A_0 AF \sim \triangle CBD. \) In this case we have \(F^\Delta = A_0. \) Therefore, the method described in Section 3.3 collapses. Thus another method has to be developed, of which the design instructions are as follows (see Fig. 19):

(a) Form the linkage parallelograms \(A_0 FEF', ABDB' \) and \(ABCB^* \) and also the fixed triangle \(\triangle AB'B'. \)
(b) Turn the four-bar \(\square AB'DF \) about \(A \) through the angle \(\alpha = \angle A, B'AB' = \angle CBD = \angle A_0 AF, \) and multiply the four-bar by the factor \(f_\alpha = B'A/B' = CB/DB = A_0 A/FA. \)
Figure 18. The 1/2–3/4 cognate of a Stephenson-2 mechanism in case E is bound by: $\triangle FDE \sim \triangle BDC$.

Figure 19. Transformation of a Stephenson-2 mechanism, for which $\triangle A_0AF \sim \triangle CBD$, into one of \(\simeq \) Watt's six-bar cognates.

(c) One obtains the four-bar $\Box A'B'D' \sim A_0 \sim \Box AB'DF$.
(d) Form the rigid triangle $\triangle CB'D$.
(e) Turn the four-bar $\Box A_0D'CC_0$ about A_0 through an arbitrarily chosen angle $\gamma = \angle D'A_0D'$ and multiply the four-bar geometrically with an arbitrarily chosen factor $f_\gamma = D'A_0/D'A_0$.
(f) One obtains the four-bar $\Box A_0D'C'C_0 \sim \Box AB'DF$.
(g) Form the rigid triangle $\triangle A_0D'F'$.
(h) Make the four-bar $\Box A'B'D'F' \sim \Box AB'DF$.
(i) Finally, form the rigid triangles $F'A'E$ and $B'C'D'$.

The cognate obtained consists of the four-bars $\Box A_0D'C'C_0$ and $\Box A'B'D'F'$ and the rigid triangles $\triangle F'A'E$, $\triangle B'C'D'$ and $\triangle A_0D'F'$.

Since γ and also f_γ may be chosen arbitrarily, one finds \simeq cognates of Watt’s form. This result is in agreement with the known* fact[8] that a mechanism of Watt with point γ may be chosen arbitrarily, one finds \simeq cognates of Watt’s form. This result is in agreement with the known* fact[8] that a mechanism of Watt with point

*This fact is only recently known, since the paper concerning the six-bar cognates of Watt’s type has only just been accepted for presentation in the coming Fall 1970 at the A.S.M.E. Conference on Mechanisms, Columbus, Ohio, U.S.A. It should also be noted that a special case of these cognates has already been investigated by A. H. Soni[9]. He found cognates of Watt’s type in case one of the four-bar sub-chains of the source mechanism was parallelogram-shaped.
E arbitrarily chosen in the plane as shown in Fig. 20, has indeed \approx^2 cognates of this type.

A special cognate of this type will be obtained by making the generating point E at the same time a turning joint of the mechanism. The resulting mechanism will then be the same as the one obtained in Fig. 15, since the mechanism obtained through this section, will have the same distribution of angular velocities over the links, and the points A_0 and E will be identical points for the two resulting mechanisms. (The latter remark connects the result of the section under consideration with that of Section 3.2.1. Therefore, it is of little importance which design procedure one prefers: in the end one obtains the same mechanism.)

\[\triangle A_0AF \sim \triangle CBD, \]

\[= \]

\[\]

Figure 20. Transformation of a particular Stephenson-2 mechanism, for which $\triangle A_0AF \sim \triangle CBD$, into one of the \approx^2 Watt's six-bar cognates.

3.4. *General remarks about the 4 cognates of the Stephenson-2 mechanism with E a point of plane 2*

Including the initial six-bar, we now have 4 cognates of a Stephenson-2 mechanism. One may prove that the 3/4-cognate of the 1/2-cognate is identical to the 1/2-3/4 cognate. One may also prove that the 1/2-cognate of the 3/4-cognate turns into the 1/2-3/4 cognate. And, finally, that the 1/2-3/4 cognate of the 1/2-cognate becomes identical to the 3/4-cognate of the initial mechanism. It is clear that all transformations are reversible.

In a similar way as the one of Section 2.1 one may prove that no other cognates exist than the 4 already obtained. In order to shorten the length of the manuscript, all proofs of the facts just mentioned have been omitted and the reader is invited to compose them himself.

4. The *Three-Fold Generation of Plane 3 of a Stephenson-2 Mechanism*

4.1 *The 1/2-cognate for plane 3*

The initial mechanism is the same as the one of Section 3 and consists of the five-bars $\bigtriangleup A_0ABCC_0$ and $\bigtriangleup A_0FDCC_0$, the four-bar $\square ABDF$, the rigid quadrangle $BCDE$ and the rigid triangle $\bigtriangleup A_0AF$. The instructions for the design of the 1/2-cognate are successively (see Fig. 21):

(a) Form the parallelograms A_0FDF^\vee and $AFDF^\wedge$.

(b) Turn the four-bar $\square DF^\wedge AB$ about D through the angle $\alpha = \angle F^\wedge DF^\vee = \angle AFA_0$ and multiply the four-bar geometrically from D by the factor $f_\alpha = F^\vee D/F^\wedge D = A_0F/AF$.

Figure 21. Diagram showing the construction of the 1/2-cognate for plane 3 of a Stephenson-2 mechanism.
Figure 21. The three-fold generation of plane 3 of a Stephenson-2 mechanism (the 1/2 cognate).

(c) One obtains the four-bar $\square DF^\gamma A^\gamma B^\gamma \sim \square DF^\gamma AB$.
(d) Finally, one forms the rigid triangles $F^\gamma F^\gamma D$, $A^\gamma A^\gamma F^\gamma$, $B^\gamma CD$ and CDE.

The 1/2- cognate obtained consists of the five-bars $\bigcirc A^\gamma A^\gamma B^\gamma C^\gamma C_0$, $\bigcirc A^\gamma F^\gamma D^\gamma C$.
the four-bar $\square A^\gamma B^\gamma DF^\gamma$ and the rigid triangles $\triangle A^\gamma A^\gamma F^\gamma$, $\triangle B^\gamma CD$ and $\triangle CDE$.

One may observe that

$$\triangle B^\gamma BD \sim \triangle A^\gamma AF \sim \triangle F^\gamma F^\gamma D \sim \triangle A^\gamma A^\gamma F^\gamma.$$

In the special case where \(\triangle A^\gamma AF \sim \triangle CBD\), one finds that $B^\gamma = C$ and the cognate

has the similar relation $\triangle A^\gamma A^\gamma F^\gamma \sim \triangle BCD$.

One also notes that the cognate six-bar generates the entire moving plane 3 and also

the curves produced by any point E of that plane.

4.2. The 1/4-cognate for plane 3

Starting with the same initial mechanism as in the preceding section, one obtains

the 1/4-cognate, using the instructions (see Fig. 22):

(a) Form the parallelograms $A^\gamma A^\gamma B^\gamma A^\gamma$ and $FABA'$.
(b) Turn $\square BA'FD$ about B through $\beta = \angle A'BA^\gamma = \angle FAA^\gamma$ and multiply the

four-bar by $f_\beta = A^\gamma B^\gamma / A'BA^\gamma = A^\gamma A^\gamma / FA$.
(c) One obtains the four-bar $\square BA^\gamma F^\gamma D^\gamma \sim \square BA'FD$.
(d) Finally, one forms the rigid triangles $\triangle A'BA^\gamma$, $\triangle A^\gamma A^\gamma F^\gamma$, $\triangle DBD^\gamma$ and $\triangle BCD^\gamma$.

The 1/4-cognate obtained consists of the five-bar $\bigcirc A^\gamma A^\gamma B^\gamma C^\gamma C_0$ and $\bigcirc A^\gamma F^\gamma D^\gamma C$, the four-bar $\square A^\gamma B^\gamma DF^\gamma$ and the rigid triangles $A^\gamma A^\gamma F^\gamma$, CBD^γ and $\triangle CD'E$.

One observes that \(\triangle F^\gamma A^\gamma A^\gamma \sim \triangle FAA^\gamma \sim \triangle BA^\gamma A^\gamma \sim \triangle A^\gamma A^\gamma F^\gamma \sim \triangle DBD^\gamma$.

Comparing the 1/4-cognate with the 1/2-cognate, one finds that $D^\gamma = B^\gamma$.

In the special case where $\triangle A^\gamma AF \sim \triangle CBD$, one sees that $D^\gamma = C = B^\gamma$ and consequently $\triangle A^\gamma A^\gamma F^\gamma \sim \triangle DBC$.

Figure 22. The three-fold generation of plane 3 of a Stephenson-2 mechanism (the 1/4 cognate).

By indirect demonstration (*reductio ad absurdum*) one may easily prove that no other cognates for an arbitrarily chosen point \(E \) of plane 3 exist. Thus, including the initial mechanism, there are three Stephenson-2 mechanisms generating the identical curve produced by any point \(E \) of the moving plane 3.

5. The Five-Fold Generation of the Curve Produced by Point D of a Stephenson-2 Mechanism

The curve generated by point \(D \) of the mechanism is algebraic of order 16 and has the genus \(7^3 \). Turning joint \(D \) of a Stephenson-2 mechanism may be regarded as a special point both of link 2 and of the moving plane 3. Therefore, the design instructions of the two Sections 3 and 4 may be applied.

In case \(E = D \), however, the 1/2-cognate of Section 3 turns into the 1/2-cognate of Section 4.

Therefore, we have the five cognates:

(a) the initial six-bar with \(D \) a turning joint between the moving planes 2 and 3 (see Fig. 10),
(b) the 1/2-cognate with \(D \) being a similar turning joint (see Fig. 21),
(c) the 3/4-cognate with \(D \) merely a specific point of plane 2 (see Fig. 12),
(d) the 1/2-3/4-cognate, also with \(D \) a specific point of a similarly situated plane in the kinematic configuration (see Fig. 23), and
(e) the 1/4-cognate, where \(D \) is merely a specific point of plane 3 (see Fig. 22).

There are no other cognates obtainable. With two cognates, point \(D \) turns out to be a turning joint. In the remaining three cognates, point \(D \) is merely a specific coupler-point attached to some moving link.

The six-bars listed under \(a, b, c \) and \(d \) are cognates discussed in Section 3. The cognates listed under \(a, b \) and \(c \) are of the kind treated in Section 4.
Figure 23. The 1/2–3/4 cognate of a Stephenson-2 mechanism with respect to the curve generated by turning joint D.
6. The Five-Fold Generation of a Coupler-Point E, Attached to Link 3 of a Stephenson-2 Six-Bar, in Case $B = C$

The mechanism under consideration is shown as the initial six-bar in the Figs. 24–27. It consists of the four bars A_0ABC_0 and $ABDF$ and the rigid triangles A_0AF and BDE. The six-bar curve considered is the one produced by the coupler-point E. The mechanism shown may be regarded as a Stephenson-1 six-bar, as a Stephenson-2 mechanism or as a Watt mechanism. In all cases observed, cognates can be found, but some of them are identical, and for this reason the total number of cognates will be restricted to five. If the mechanism is taken for a Stephenson-1 mechanism, the one cognate obtained in that case will be a $1/4$-cognate, also obtainable if the initial mechanism is taken for a Stephenson-2 six-bar. As shown in Section 4, three cognates may be found, as long as the initial mechanism is regarded as a Stephenson-2 six-bar. These are the initial mechanism, the $1/4$-cognate obtained in Fig. 24, and the $1/2$-cognate shown in Fig. 27. The $1/4$-cognate, mentioned before, will also be obtained, if the

Figure 24. The $1/4$ cognate for plane 3 if $B = C$. (The five-fold generation of the curve produced by point E of the plane).

Figure 25. Transformation of a particular Stephenson-2 mechanism (with $B = C$) into a mechanism of Watt’s type. (The $2/3$-cognate).
initial mechanism is looked upon as a special configuration of the Watt mechanism [8]. But besides that, we also find two other cognates of Watt's type of the initial mechanism. These are the 2/3-cognate (see Fig. 25) and the 1/4–2/3 cognate (see Fig. 26). In designing the Watt's 2/3-cognate of the 1/4-c cognate, one obtains the 1/4–2/3 cognate again. And finally, the 1/4-cognate taken from the Watt's 2/3-cognate also produces the 1/4–2/3 cognate.

The design procedure for the 2/3-cognate will here be given briefly (see Fig. 25):

(a) Frame the parallelograms $FDCD^\Delta$ and $FDED^\Delta$.
(b) Make four-bar $\Box FA^*B^*D^* \sim \Box FABD^\Delta$.
(c) Form the rigid and mutually similar triangles FAA^*, FD^*D^* and D^*EB^* (all similar to $\triangle DCE$).

d) Make the four-bar $\square A_0A^*C^*C^*_0 \sim \square A_0ACC_0$.

(e) And finally, form the rigid triangles A_0A^*F, $A_0C_0C^*$ and $A^*B^*C^*$.

The mechanism obtained is indicated in Fig. 25 by thick solid lines.

The design instructions for the 1/4-2/3 cognate are briefly (see Fig. 26):

(a) Make the four-bar $\square CEF'A^* \sim \square CDFA$.

(b) Frame the rigid triangle $\triangle AA'C$. the parallelogram $A_0AA'\gamma$ and the rigid triangle $\triangle F'A^*A^\gamma$.

(c) Make the four-bar $\square F'A^*C^*E^* \sim \square FACD$.

(d) Frame the rigid triangles $A_0A^*C^\gamma$ and $\triangle F'E^*E$, the linkage parallelogram A_0ACA^γ and the rigid triangle $\triangle A_0A^*A^\gamma$.

(e) Make the four-bar $\square A_0A^*C^\gamma C^*_0 \sim \square A_0A^*CC_0$.

(f) Frame the rigid triangles $A^\gamma C^\gamma F^\gamma$ and $A_0C_0C^\gamma$.

The six-bar obtained is shown by Fig. 26 by thick solid lines and has one degree of freedom in movement like the initial mechanism.

There are no other cognates to be obtained. The initial six-bar, and its 1/4-cognate only, have coincident turning joints B and C. This is not the case with the three remaining cognates. On these grounds, no other cognates are to be found in this particular case.

References
[18] DIJKSMAN E. A., How to compose mechanisms with parallel moving bars (with application on a level-luffing jib-crane consisting of a four-bar linkage and exploiting a coupler-point curve). De Ingenieur 82 (47), W171-W176 (1970).