Asset backed securities:
Risks, Ratings and Quantitative Modelling

December 2, 2009

Henrik Jönsson¹ and Wim Schoutens²

¹Postdoctoral Research Fellow, EURANDOM, Eindhoven, The Netherlands. E-mail: jonsson@eurandom.tue.nl
²Research Professor, Department of Mathematics, K.U.Leuven, Leuven, Belgium. E-mail: wim@schoutens.be
Abstract

Asset backed securities (ABSs) are structured finance products backed by pools of assets and are created through a securitisation process. The risks in asset backed securities, such as, credit risk, prepayment risk, market risks, operational risk, and legal risks, are directly connected with the asset pool and the structuring of the securities. The assessment of structured finance products is an assessment of these risks and how well the structure mitigates them. This procedure is partly based on quantitative models for the defaults and prepayments of the assets in the pool. In the present report we look at the risks present in ABSs, present a collection of different default and prepayment models and describe two major rating agencies methodologies for assessing and rating ABSs. The topics covered in the report are illustrated by case studies.

Acknowledgement:
The presented study is part of the research project “Quantitative analysis and analytical methods to price securitisation deals”, sponsored by the European Investment Bank via the university research sponsorship programme EIBURS. The authors acknowledge the intellectual support from the participants of the previously mentioned project.

Project participants:
Marcella Bellucci, Financial Engineering and Advisory Services, EIB, Luxembourg;
Guido Bichisao, Head of Financial Engineering and Advisory Services, EIB, Luxembourg (EIB project tutor);
Henrik Jöansson, EURANDOM, The Netherlands (EURANDOM EIBURS research fellow);
Luke Mellor, Creative Capital Partners, Sweden;
Wim Schoutens, Katholieke Universiteit Leuven, Belgium (EURANDOM EIBURS project supervisor);
Karsten Sundermann, Financial Engineering and Advisory Services, EIB, Luxembourg;
Geert van Damme, Katholieke Universiteit Leuven, Belgium.
Contents

1 Introduction ... 1

2 Introduction to asset-backed securities .. 3
2.1 Key securitisation parties ... 3
2.2 Structural characteristics .. 4
2.3 Priority of payments .. 5
2.4 Loss allocation ... 5
2.5 Credit enhancement ... 6
2.6 Basic risks ... 10
2.7 Triggers ... 10
2.8 Rating .. 10

3 Cash flow modelling ... 11
3.1 Asset behaviour .. 11
3.2 Structural features .. 12
3.3 Revolving structures .. 12

4 Modelling defaults and prepayments ... 13
4.1 Deterministic default models .. 13
4.1.1 Conditional default rate .. 13
4.1.2 Default vector approach .. 15
4.1.3 Logistic default model ... 16
4.2 Stochastic default models ... 18
4.2.1 Lévy portfolio default model ... 18
4.2.2 Normal one-factor default model ... 20
4.2.3 Generic one-factor Lévy default model .. 22
4.3 Deterministic prepayment models .. 23
4.3.1 Conditional Prepayment Rate .. 23
4.3.2 The PSA benchmark .. 24
4.3.3 A generalised CPR model .. 25
4.4 Stochastic prepayment models .. 26
4.4.1 Lévy portfolio prepayment model ... 26
4.4.2 Normal one-factor prepayment model ... 26

5 Rating agencies methodologies ... 28
5.1 Moody’s ... 28
5.1.1 Non-Granular portfolios ... 28
5.1.2 Granular portfolios ... 29
5.2 Standard and Poor’s .. 32
5.2.1 Credit quality of defaulted assets ... 32
5.2.2 Cash flow modelling ... 34
5.3 Conclusions .. 37
6 Case studies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>A two note structure</td>
<td>38</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Cash flow modelling</td>
<td>40</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Numerical results</td>
<td>43</td>
</tr>
<tr>
<td>6.2</td>
<td>Geldilux TS 2005 S.A.</td>
<td>45</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Structural features</td>
<td>45</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The Loan Portfolio</td>
<td>49</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Risks</td>
<td>50</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Performance</td>
<td>52</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Summary</td>
<td>53</td>
</tr>
</tbody>
</table>

7 Summary | 55
1 Introduction

The research project “Quantitative analysis and analytical methods to price securitisation deals”, sponsored by the European Investment Bank via the university research sponsorship programme EIBURS, aims at conducting advanced research related to rating, pricing and risk management of Asset-Backed Securities (ABSs). The analysis of existing default and prepayment models and the development of new, more advanced default and prepayment models is one objective of the project. Another objective is to achieve a better understanding of the major rating agencies methodologies and models for rating asset-backed securities, and the underlying assumptions and the limitations in their methodologies and models. The analysis of a number of case studies will be an integral part of the project. Finally, we aim to study the default and prepayment models influence on key characteristics of the asset-backed securities and also investigate the parameter sensitivity and robustness of these key characteristics. The deliverables of the project are:

- Default and prepayment models: overview of standard models and new models;
- Rating agencies models and methods: summary of the agencies methodology to rate ABSs;
- Cash flow modelling: general comments on the most common features in ABS cash flows;
- Case studies: a number of existing ABS deals will be analysed and the default and prepayment models will be tested on these deals;
- Sensitivity analysis: parameter sensitivity and robustness of key characteristics of ABSs (weighted average life, expected loss, rating, value).

A major contribution of the project will be the annually organisation of a workshop/conference with the aim to gather speakers and participants from both industry and academia, with expertise in securitisation, asset-backed securities and related fields, to discuss the assessment and handling of ABSs and what lessons that have been learned from the recent financial crisis. Topics to be covered include: cash flow modelling; modelling of defaults and prepayments; data sources for different securities; rating agency methodologies; risk management of ABSs; valuation; and sensitivity analysis.

The results and knowledge attained throughout the first half of the project is summarised in the present report. The outline of the text is as follows. In Section 2, a short introduction to asset-backed securities is given. Cashflow modelling of ABS deals are divided into two parts: the modelling of the cash collections from the asset pool and the distribution of the collections to the note holders. This is discussed in Section 3. The modelling of the cash collections from the asset pool depends heavily on default and prepayment models. A collection of default and prepayment models are presented in Section 4. Rating agencies methodologies for rating ABS are discussed in Section 5. Section 6 presents case studies of ABS deals. The report is summarised in Section 7.

2 Introduction to asset-backed securities

Asset-Backed Securities (ABSs) are structured finance products backed by pools of assets. ABSs are created through a securitisation process, where assets are pooled together and the liabilities backed by these assets are tranched such that the ABSs have different seniority and risk-return profiles. The Bank for International Settlements defined structured finance through the following characterisation (BIS (2005), p. 5):

...
• Pooling of assets;
• Tranching of liabilities that are backed by these collateral assets;
• De-linking of the credit risk of the collateral pool from the credit risk of the originator, usually through the use of a finite-lived, standalone financing vehicle.

Asset classes

The asset pools can be made up of almost any type of assets, ranging from common automobile loans, student loans and credit cards to more esoteric cash flows such as royalty payments (“Bowie bonds”). A few typical asset classes are listed in Table 1.

<table>
<thead>
<tr>
<th>Auto leases</th>
<th>Auto loans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial mortgages</td>
<td>Residential mortgages</td>
</tr>
<tr>
<td>Student loans</td>
<td>Credit cards</td>
</tr>
<tr>
<td>Home equity loans</td>
<td>Manufactured housing loans</td>
</tr>
<tr>
<td>SME loans</td>
<td>Entertainment royalties</td>
</tr>
</tbody>
</table>

Table 1: Some typical ABS asset classes.

In this project we have performed case study analysis of SME loans ABSs. There are several ways to distinguish between structured finance products according to their collateral asset classes: cash flow vs. synthetic; existing assets vs. future flows; corporate related vs. consumer related.

• Cash flow: The interest and principal payments generated by the assets are passed through to the notes. Typically there is a legal transfer of the assets.
• Synthetic: Only the credit risk of the assets are passed on to the investors through credit derivatives. There is no legal transfer of the underlying assets.
• Existing assets: The asset pool consists of existing assets, e.g., loan receivables, with already existing cash flows.
• Future flows: Securitisation of expected cash flows of assets that will be created in the future, e.g., airline ticket revenues and pipeline utilisation fees.
• Corporate related: e.g., commercial mortgages, auto and equipment leases, trade receivables;
• Consumer related: e.g., automobile loans, residential mortgages, credit cards, home equity loans, student loans.

Although it is possible to call all types of securities created through securitisation asset backed securities it seems to be common to make a few distinctions. It is common to refer to securities backed by mortgages as mortgage backed securities (MBSs) and furthermore distinguish between residential mortgages backed securities (RMBS) and commercial mortgages backed securities (CMBS). Collateralised debt obligations (CDOs) are commonly viewed as a separate structured finance product group, with two subcategories: corporate related assets (loans, bonds, and/or credit default swaps) and resecuritisation assets (ABS CDOs, CDO-squared). In the corporate related CDOs can two sub-classes be distinguished: collateralised loan obligations (CLO) and collateralised bond obligations (CBO).
2.1 Key securitisation parties

The following parties are key players in securitisation:

- **Originator(s):** institution(s) originating the pooled assets;
- **Issuer/Arranger:** Sets up the structure and tranches the liabilities, sell the liabilities to investors and buys the assets from the originator using the proceeds of the sale. The Issuer is a finite-lived, standalone, bankruptcy remote entity referred to as a special purpose vehicle (SPV) or special purpose entity (SPE);
- **Servicer:** collects payments from the asset pool and distribute the available funds to the liabilities. The servicer is also responsible for the monitoring of the pool performance: handling delinquencies, defaults and recoveries. The servicer plays an important role in the structure. The deal has an exposure to the servicer’s credit quality; any negative events that affect the servicer could influence the performance and rating of the ABS. We note that the originator can be the servicer, which in such case makes the structure exposed to the originator’s credit quality despite the de-linking of the assets from the originator.
- **Investors:** invests in the liabilities;
- **Trustee:** supervises the distribution of available funds to the investors and monitors that the contracting parties comply to the documentation;
- **Rating Agencies:** Provide ratings on the issued securities. The rating agencies have a more or less direct influence on the structuring process because the rating is based not only on the credit quality of the asset pool but also on the structural features of the deal. Moreover, the securities created through the tranching are typically created with specific rating levels in mind, making it important for the issuer to have an iterative dialogue with the rating agencies during the structuring process. We point here to the potential danger caused by this interaction. Because of the negotiation process a tranche rating, say 'AAA', will be just on the edge of 'AAA', i.e., it satisfies the minimal requirements for the 'AAA' rating without extra cushion.
- **Third-parties:** A number of other counterparties can be involved in a structured finance deal, for example, financial guarantors, interest and currency swap counterparties, and credit and liquidity providers.

2.2 Structural characteristics

There are many different structural characteristics in the ABS universe. We mention here two basic structures, **amortising** and **revolving**, which refer to the reduction of the pool’s aggregated outstanding principal amount.

Each collection period the aggregated outstanding principal of the assets can be reduced by scheduled repayments, unscheduled prepayments and defaults. To keep the structure fully collateralized, either the notes have to be redeemed or new assets have to be added to the pool.

In an **amortising structure**, the notes should be redeemed according to the relevant priority of payments with an amount equal to the note redemption amount. The **note redemption amount** is commonly calculated as the sum of the principal collections from scheduled repayments and unscheduled prepayments over the collection period. Sometimes the recoveries of defaulted loans are added to the note redemption amount. Another alternative, instead of adding the
recoveries to the redemption amount, is to add the total outstanding principal amount of the loans defaulting in the collection period to the note redemption amount (see Loss allocation).

In a revolving structure, the Issuer purchases new assets to be added to the pool to keep the structure fully collateralized. During the revolving period the Issuer may purchase additional assets offered by the Originator, however these additional assets must meet certain eligibility criteria. The eligibility criteria are there to prevent the credit quality of the asset pool to deteriorate. The revolving period is most often followed by an amortisation period during which the structure behaves as an amortising structure. The replenishment amount, the amount available to purchase new assets, is calculated in a similar way as the note redemption amount.

2.3 Priority of payments

The allocation of interest and principal collections from the asset pool to the transaction parties is described by the priority of payments (or waterfall). The transaction parties that keeps the structure functioning (originator, servicer, and issuer) have the highest priorities. After these senior fees and expenses, the interest payments on the notes could appear followed by pool replenishment or note redemption, but other sequences are also possible.

Waterfalls can be classified either as combined waterfalls or as separate waterfalls. In a combined waterfall, all cash collections from the asset pool are combined into available funds and the allocation is described in a single waterfall. There is, thus, no distinction made between interest collections and principal collections. However, in a separate waterfall, interest collections and principal collections are kept separated and distributed according to an interest waterfall and a principal waterfall, respectively. This implies that the available amount for note redemption or asset replenishment is limited to the principal cashflows.

A revolving structure can have a revolving waterfall, which is valid as long as replenishment is allowed, followed by an amortising waterfall.

In an amortising structure, principal is allocated either pro rata or sequential. Pro rata allocation means a proportional allocation of the note redemption amount, such that the redemption amount due to each note is an amount proportional to the note’s fraction of the total outstanding principal amount of the notes on the closing date.

Using sequential allocation means that the most senior class of notes is redeemed first, before any other notes are redeemed. After the most senior note is redeemed, the next note in rank is redeemed, and so on. That is, principal is allocated in order of seniority.

It is important to understand that “pro rata” and “sequential” refer to the allocation of the note redemption amount, that is, the amounts to due to be paid to each class of notes. It is not describing the amounts actually being paid to the notes, which is controlled by the priority of payments and depends on the amount of available funds at the respectively level of the waterfall.

One more important term in connection with the priority of payments is pari passu, which means that two or more parties have equal right to payments.

Example

Assume a structure with two classes of note, A and B, and the following simple waterfall:

1. Servicing fees;
2. Class A Interest;
3. Class B Interest;
4. Class A Principal;
5. Class B Principal;
6. Reserve account reimbursement;
7. Residual Payment.

In the above waterfall Class A Notes principal payments are ranked senior to Class B Notes principal payments. Assume that the principal payments to Class A Notes and Class B Notes are paid *pari passu* instead. Then Class A Notes and Class B Notes have equal rights to the available funds after level 3, and level 4 and 5 in the waterfall become effectively one level. Similarly, we can also assume that class A and class B interest payments are allocated pro rata and paid pari passu.

A more detailed description of the waterfall is given in Section 6.1.1.

2.4 Loss allocation

At defaults in the asset pool, the aggregate outstanding principal amount of the pool is reduced by the defaulted assets outstanding principal amount. There are basically two different ways to distribute these losses in the pool to the note investors: either direct or indirect. In a structure where losses are directly allocated to the note investors, the losses are allocated according to *reverse order of seniority*, which means that the most subordinated notes are first suffering reduction in principal amount. This affects the subordinated note investors directly in two ways: loss of invested capital and a reduction of the coupon payments, since the coupon is based on the note’s outstanding principal balance.

On the other hand, as already mentioned above in the description of structural characteristics, an amount equal to the principal balance of defaulted assets can be added to the note redemption amount in an amortising structure to make sure that the asset side and the liability side is at par. In a revolving structure, this amount is added to the replenishment amount instead. In either case, the defaulted principal amount to be added is taken from the excess spread (see Credit enhancement subsection below).

In an amortising structure with sequential allocation of principal, this method will reduce the coupon payments to the senior note investors while the subordinated notes continue to collect coupons based on the full principal amount (as long as there is enough available funds at that level in the priority of payments). Any potential principal losses are not recognised until the final maturity of the notes.

2.5 Credit enhancement

Credit enhancements are techniques used to improve the credit quality of a bond and can be provided both internally as externally.

The *internal* credit enhancement is provided by the originator or from within the deal structure and can be achieved through several different methods: *subordination*, *reserve fund*, *excess spread*, *over-collateralisation*. The *subordination structure* is the main internal credit enhancement. Through the tranching of the liabilities a subordination structure is created and a priority of payments (the waterfall) is setup, controlling the allocation of the cashflows from the asset pool to the securities in order of seniority.

Over-collateralisation means that the total nominal value of the assets in the collateral pool is greater than the total nominal value of the asset backed securities issued, or that the assets
are sold with a discount. Over-collateralisation creates a cushion which absorbs the initial losses in the pool.

The excess spread is the difference between the interest and revenues collected from the assets and the senior expenses (for example, issuer expenses and servicer fees) and interest on the notes paid during a month.

Another internal credit enhancement is a reserve fund, which could provide cash to cover interest or principal shortfalls. The reserve fund is usually a percentage of the initial or outstanding aggregate principal amount of the notes (or assets). The reserve fund can be funded at closing by proceeds and reimbursed via the waterfall.

When a third party, not directly involved in the securitisation process, is providing guarantees on an asset backed security we speak about an external credit enhancement. This could be, for example, an insurance company or a monoline insurer providing a surety bond. The financial guarantor guarantees timely payment of interest and timely or ultimate payment of principal to the notes. The guaranteed securities are typically given the same rating as the insurer. External credit enhancement introduces counterparty risk since the asset backed security now relies on the credit quality of the guarantor. Common monoline insurers are Ambac Assurance Corporation, Financial Guaranty Insurance Company (FGIC), Financial Security Assurance (FSA) and MBIA, with the in the press well documented credit risks and its consequences (see, for example, KBC’s exposure to MBIA).

2.6 Basic risks

Due to the complex nature of securitisation deals there are many types of risks that have to be taken into account. The risks arise from the collateral pool, the structuring of the liabilities, the structural features of the deal and the counterparties in the deal.

The main types of risks are credit risk, prepayment risk, market risks, reinvestment risk, liquidity risk, counterparty risk, operational risk and legal risk.

Credit Risk

Beginning with credit risk, this type of risk originates from both the collateral pool and the structural features of the deal. That is, both from the losses generated in the asset pool and how these losses are mitigated in the structure.

Defaults in the collateral pool results in loss of principal and interest. These losses are transferred to the investors and allocated to the notes, usually in reverse order of seniority either directly or indirectly, as described in Section 2.4.

In the analysis of the credit risks, it is very important to understand the underlying assets in the collateral pool. Key risk factors to take into account when analyzing the deal are:

- asset class(-es) and characteristics: asset types, payment terms, collateral and collateralisation, seasoning and remaining term;
- diversification: geographical, sector and borrower;
- asset granularity: number and diversification of the assets;
- asset homogeneity or heterogeneity;

An important step in assessing the deal is to understand what kind of assets the collateral pool consists of and what the purpose of these assets are. Does the collateral pool consist
of short term loans to small and medium size enterprises where the purpose of the loans are working capital, liquidity and import financing, or do we have in the pool residential mortgages? The asset types and purpose of the assets will influence the overall behavior of the pool and the ABS. If the pool consists of loan receivables, the loan type and type of collateral is of interest for determining the loss given default or recovery. Loans can be of unsecured, partially secured and secured type, and the collateral can be real estates, inventories, deposits, etc. The collateralisation level of a pool can be used for the recovery assumption.

A few borrowers that stands for a significant part of the outstanding principal amount in the pool can signal a higher or lower credit risk than if the pool consisted of a homogeneous borrower concentration. The same is true also for geographical and sector concentrations.

The granularity of the pool will have an impact on the behavior of the pool and thus the ABS, and also on the choice of methodology and models to assess the ABS. If there are many assets in the pool it can be sufficient to use a top-down approach modeling the defaults and prepayments on a portfolio level, while for a non-granular portfolio a bottom-up approach, modeling each individual asset in the pool, can be preferable. From a computational point of view, a bottom-up approach can be hard to implement if the portfolio is granular. (Moody’s, for example, are using two different methods: factor models for non-granular portfolios and Normal Inverse default distribution and Moody’s ABSROM™ for granular, see Section 5.1.)

Prepayment Risk

Prepayment is the event that a borrower prepays the loan prior to the scheduled repayment date. Prepayment takes place when the borrower can benefit from it, for example, when the borrower can refinance the loan to a lower interest rate at another lender.

Prepayments result in loss of future interest collections because the loan is paid back prematurely and can be harmful to the securities, specially for long term securities.

A second, and maybe more important consequence of prepayments, is the influence of unscheduled prepayment of principal that will be distributed among the securities according to the priority of payments, reducing the outstanding principal amount, and thereby affecting their weighted average life. If an investor is concerned about a shortening of the term we speak about contraction risk and the opposite would be the extension risk, the risk that the weighted average life of the security is extended.

In some circumstances, it will be borrowers with good credit quality that prepay and the pool credit quality will deteriorate as a result. Other circumstances will lead to the opposite situation.

Market Risk

The market risks can be divided into: cross currency risk and interest rate risk.

The collateral pool may consist of assets denominated in one or several currencies different from the liabilities, thus the cash flow from the collateral pool has to be exchanged to the liabilities’ currency, which implies an exposure to exchange rates. This risk can be hedged using currency swaps.

The interest rate risk can be either basis risk or interest rate term structure risk. Basis risk originates from the fact that the assets and the liabilities may be indexed to different benchmark indexes. In a scenario where there is an increase in the liability benchmark index that is not followed by an increase in the collateral benchmark index there might be a lack of interest collections from the collateral pool, that is, interest shortfall.
The interest rate term structure risk arise from a mismatch in fixed interest collections from the collateral pool and floating interest payments on the liability side, or vice versa.

The basis risk and the term structure risk can be hedge with interest rate swaps.

Currency and interest hedge agreements introduce counterparty risk (to the swap counterparty), discussed later on in this section.

Reinvestment Risk

There exists a risk that the portfolio credit quality deteriorates over time if the portfolio is replenished during a revolving period. For example, the new assets put into the pool can generate lower interest collections, or shorter remaining term, or will influence the diversification (geographical, sector and borrower) in the pool, which potentially increases the credit risk profile.

These risks can partly be handled through eligibility criteria to be compiled by the new replenished assets such that the quality and characteristics of the initial pool are maintained. The eligibility criteria are typically regarding diversification and granularity: regional, sector and borrower concentrations; and portfolio characteristics such as the weighted average remaining term and the weighted average interest rate of the portfolio.

Moody’s reports that a downward portfolio quality migration has been observed in asset backed securities with collateral pools consisting of loans to small and medium size enterprises where no efficient criteria were used (see Moody’s (2007c)).

A second common feature in replenishable transactions is a set of early amortisation triggers created to stop replenishment in case of serious delinquencies or defaults event. These triggers are commonly defined in such a way that replenishment is stopped and the notes are amortized when the cumulative delinquency rate or cumulative default rate breaches a certain level. More about performance triggers follow later.

Liquidity Risk

Liquidity risk refers to the timing mismatches between the cashflows generated in the asset pool and the cashflows to be paid to the liabilities. The cashflows can be either interest, principal or both. The timing mismatches can occur due to maturity mismatches, i.e., a mismatch between scheduled amortisation of assets and the scheduled note redemptions, to rising number of delinquencies, or because of delays in transferring money within the transaction. For interest rates there can be a mismatch between interest payment dates and periodicity of the collateral pool and interest payments to the liabilities.

Counterparty Risk

As already mentioned the servicer is a key party in the structure and if there is a negative event affecting the servicer’s ability to perform the cash collections from the asset pool, distribute the cash to the investors and handling delinquencies and defaults, the whole structure is put under pressure. Cashflow disruption due to servicer default must be viewed as a very severe event, especially in markets where a replacement servicer may be hard to find. Even if a replacement servicer can be found relatively easy, the time it will take for the new servicer to start performing will be crucial.

Standard and Poor’s consider scenarios where the servicer may be unwilling or unable to perform its duties and a replacement servicer has to be found when rating a structured finance transaction. Factors that may influence the likelihood of a replacement servicer’s availability and willingness to accept the assignment are: ”... the sufficiency of the servicing fee to attract
a substitute servicer, the seniority of the servicing fee in the transaction’s payment waterfall, the availability of alternative servicers in the sector or region, and specific characteristics of the assets and servicing platform that may hinder an orderly transition of servicing functions to another party.”

Originator default can cause severe problems to a transaction where replenishment is allowed, since new assets cannot be put into the collateral pool.

Counterparty risk arises also from third-parties involved in the transaction, for example, interest rate and currency swap counterparties, financial guarantors and liquidity or credit support facilities. The termination of a interest rate swap agreement, for example, may expose the issuer to the risk that the amounts received from the asset pool might not be enough for the issuer to meet its obligations in respect of interest and principal payments due under the notes. The failure of a financial guarantor to fulfill its obligations will directly affect the guaranteed note. The downgrade of a financial guarantor will have an direct impact on the structure, which has been well documented in the past years.

To mitigate counterparty risks, structural features, such as, rating downgrade triggers, collateralisation remedies, and counterparty replacement, can be present in the structure to (more or less) de-link the counterparty credit risk from the credit risk of the transaction.

The rating agencies analyse the nature of the counterparty risk exposure by reviewing both the counterparty’s credit rating and the structural features incorporated in the transaction. The rating agencies analyses are based on counterparty criteria frameworks detailing the key criteria to be fulfilled by the counterparty and the structure.4

Operational Risk

This refers partly to reinvestment risk, liquidity risk and counterparty risk, which was already discussed earlier. However, operational risk also includes the origination and servicing of the assets and the handling of delinquencies, defaults and recoveries by the originator and/or servicer.

The rating agencies conducts a review of the servicer’s procedures for, among others, collecting asset payments, handling delinquencies, disposing collateral, and providing investor reports.5

The originator’s underwriting standard might change over time and one way to detect the impact of such changes is by analysing trends in historical delinquency and default data.6 Moody’s remarks that the underwriting and servicing standards typically have a large impact on cumulative default rates and by comparing historical data received from two originators active in the same market over a similar period can be a good way to assess the underwriting standard of originators: “Differences in the historical data between two originators subject to the same macro-economic and regional situation may be a good indicator of the underwriting (e.g. risk appetite) and servicing standards of the two originators.”7

Legal Risks

The key legal risks are associated with the transfer of the assets from the originator to the issuer and the bankruptcy remoteness of the issuer. The transfer of the assets from the originator to the issuer must be of such a kind that an originator insolvency or bankruptcy does not impair

3Standard and Poor’s (2007b) p. 4.
4See Standard and Poor’s (2007a), Standard and Poor’s (2008a), Standard and Poor’s (2009c), and Moody’s (2007b).
5Moody’s (2007a) and Standard and Poor’s (2007b)
7Moody’s (2009a) p. 7.
the issuer’s rights to control the assets and the cash proceeds generated by the asset pool. This transfer of the assets is typically done through a “true sale”.

The bankruptcy remoteness of the issuer depends on the corporate, bankruptcy and securitisation laws of the relevant legal jurisdiction.

2.7 Triggers

Triggers are used to modify the operation of the deal, for example: the ending of replenishment and start of amortisation prior to the end date of the revolving period (early amortisation triggers); changes to the priority of payments such that principal redemption of senior notes rank higher than interest payments to subordinated notes (acceleration triggers); pro rata principal payment is changed to sequential payment (acceleration triggers); or that interest on junior notes are deferred to allow for a faster redemption of senior notes (interest deferral triggers).

Triggers can be divided into two groups: quantitative and qualitative. Example of quantitative triggers are cumulative delinquencies, default and loss rates triggers. In these cases the trigger is hit if the observed quantity is above a certain level. This level can be time dependent, allowing for the trigger level to increase over time. Qualitative triggers refers to, for example, rating downgrade of servicer, swap counterparty, or another counterparties and the failure to replace the affected transaction party within a certain time frame.

2.8 Rating

A rating is an assessment of either expected loss or probability of default.

Moody’s ratings of ABSs are an expected loss assessment, which incorporates assessments of both the likelihood of default and the severity of loss, given default. That is, the rating is based on the probability weighted loss to the note investor. Moody’s makes the following definition of structured finance long-term ratings:

“Moody’s ratings on long-term structured finance obligations primarily address the expected credit loss an investor might incur on or before the legal final maturity of such obligations vis-à-vis a defined promise. As such, these ratings incorporate Moody’s assessment of the default probability and loss severity of the obligations. They are calibrated to Moody’s Corporate Scale. Such obligations generally have an original maturity of one year or more, unless explicitly noted. Moody’s credit ratings address only the credit risks associated with the obligations; other non-credit risks have not been addressed, but may have a significant effect on the yield to investors.”

With the probability of default approach the rating assess the likelihood of full and timely payment of interest and the ultimate payment of principal no later than the legal final maturity date. This is the approach taken by Standard and Poor’s and they make the following statement concerning their issue credit rating definition:

“It takes into consideration the creditworthiness of guarantors, insurers, or other forms of credit enhancement on the obligation and takes into account the currency in which the obligation is denominated. The opinion evaluates the obligor’s capacity and willingness to meet its financial commitments as they come due, and may assess terms, such as collateral security and subordination, which could affect ultimate payment in the event of default.”

9Standard and Poor’s (2009d), p.3.
3 Cash flow modelling

The modelling of the cash flows in an ABS deal consists of two parts: the modelling of the cash collections from the asset pool and the distribution of the collections to the note holders and other transaction parties.

The first step is to model the cash collections from the asset pool, which depends on the behaviour of the pooled assets. This can be done in two ways: with a top-down approach, modelling the aggregate pool behaviour; or with a bottom-up approach modelling each individual loan. For the top-down approach one assumes that the pool is homogeneous, that is, each asset behaves as the average representative of the assets in the pool (a so called representative line analysis or repline analysis). For the bottom-up approach one can choose to use either the representative line analysis or to model each individual loan (so called loan level analysis). If a top-down approach is chosen, the modeller has to choose between modelling defaulted and prepaid assets or defaulted and prepaid principal amounts, i.e., to count assets or money units.

On the liability side one has to model the waterfall, that is, the distribution of the cash collections to the note holders, the issuer, the servicer and other transaction parties.

In this section we make some general comments on the cash flow modelling of ABS deals. The case studies presented later in this report will highlight the issues discussed here.

3.1 Asset behaviour

The assets in the pool can be categorised as performing, delinquent, defaulted, repaid and prepaid. A performing asset is an asset that pays interest and principal in time during a collection period, i.e. the asset is current. An asset that is in arrears with one or several interest and/or principal payments is delinquent. A delinquent asset can be cured, i.e. become a performing asset again, or it can become a defaulted asset. Defaulted assets goes into a recovery procedure and after a time lag a portion of the principal balance of the defaulted assets are recovered. A defaulted asset is never cured, it is once and for all removed from the pool. When an asset is fully amortised according to its amortisation schedule, the asset is repaid. Finally, an asset is prepaid if it is fully amortised prior to its amortisation schedule.

The cash collections from the asset pool consist of interest collections and principal collections (both scheduled repayments, unscheduled prepayments and recoveries). There are two parts of the modelling of the cash collections from the asset pool. Firstly, the modelling of performing assets, based on asset characteristics such as initial principal balance, amortisation scheme, interest rate and payment frequency and remaining term. Secondly, the modelling of the assets becoming delinquent, defaulted and prepaid, based on assumptions about the delinquency rates, default rates and prepayment rates together with recovery rates and recovery lags.

The characteristics of the assets in the pool are described in the Offering Circular and a summary can usually be found in the rating agencies pre-sale or new issue reports. The aggregate pool characteristics described are the total number of assets in the pool, current balance, weighted average remaining term, weighted average seasoning and weighted average coupon. The distribution of the assets in the pool by seasoning, remaining term, interest rate profile, interest payment frequency, principal payment frequency, geographical location, and industry sector are also given. Out of this pool description the analyst has to decide if to use a representative line analysis assuming a homogeneous pool, to use a loan-level approach modelling the assets individually or take an approach in between modelling sub-pools of homogeneous assets. In this report we focus on large portfolios of assets, so the homogeneous portfolio approach (or homogeneous sub-portfolios) is the one we have in mind.
For a homogeneous portfolio approach the average current balance, the weighted average remaining term and the weighted average interest rate (or spread) of the assets are used as input for the modelling of the performing assets. Assumptions on interest payment frequencies and principal payment frequencies can be based on the information given in the offering circular.

Assets in the pool can have fixed or floating interest rates. A floating interest rate consists of a base rate and a margin (or spread). The base rate is indexed to a reference rate and is reset periodically. In case of floating rate assets, the weighted average margin (or spread) is given in the offering circular. Fixed interest rates can sometimes also be divided into a base rate and a margin, but the base rate is fixed once and for all at the closing date of the loan receivable.

The scheduled repayments, or amortisations, of the assets contribute to the principal collections and has to be modelled. Assets in the pool might amortise with certain payment frequency (monthly, quarterly, semi-annually, annually) or be of bullet type, paying back all principal at the scheduled asset maturity, or any combination of these two (soft bullet).

The modelling of non-performing assets requires default and prepayment models which takes as input assumptions about delinquency, default, prepayment and recovery rates. These assumptions have to be made on the basis of historical data, geographical distribution, obligor and industry concentration, and on assumptions about the future economical environment. Several default and prepayment models will be described in the next chapter.

We end this section with a remark about delinquencies. Delinquencies are usually important for a deal’s performance. A delinquent asset is usually defined as an asset that has failed to make one or several payments (interest or principal) on scheduled payment dates. It is common that delinquencies are categorised in time buckets, for example, in 30+ (30-59), 60+ (60-89), 90+ (90-119) and 120+ (120-) days overdue. However, the exact timing when a loan becomes delinquent and the reporting method used by the servicer will be important for the classification of an asset to be current or delinquent and also for determining the number of payments past due, see Moody’s (2000a).

3.2 Structural features

The key structural features discussed earlier in Section 2: structural characteristics, priority of payments, loss allocation, credit enhancements, and triggers, all have to be taken into account when modelling the liability side of an ABS deal. So does the basic information on the notes legal final maturity, payment dates, initial notional amounts, currency, and interest rates. The structural features of a deal are detailed in the offering circular.

In Section 6.1.1 a detailed description of the cash flow modelling in a transaction with two classes of notes is given.

3.3 Revolving structures

A revolving period adds an additional complexity to the modelling because new assets are added to the pool. Typically each new subpool of assets should be handled individually, modelling defaults and prepayments separately, because the assets in the different subpools will be in different stages of their default history. Default and prepayment rates for the new subpools might also be assumed to be different for different subpools.

Assumptions about the characteristics of each new subpool of assets added to the pool have to be made in view of interest rates, remaining term, seasoning, and interest and principal payment frequencies. To do this, the pool characteristics at closing together with the eligibility criteria for new assets given in the offering circular can be of help.
4 Modelling defaults and prepayments

To be able to assess ABS deals one need to model the defaults and the prepayments in the underlying asset pool. The models discussed here all refer to static pools.

We divide the default and prepayment models into two groups, deterministic and stochastic models. The deterministic models are simple models with no built in randomness, i.e., as soon as the model parameters are set the evolution of the defaults and prepayments are known for all future times. The stochastic models are more advanced, based on stochastic processes and probability theory. By modelling the evolution of defaults and prepayments with stochastic processes we can achieve three objectives:

- Stochastic timing of defaults and prepayments;
- Stochastic monthly default and prepayments rates;
- Correlation: between defaults; between prepayments; and between defaults and prepayments.

We focus on the time interval between the issue \((t = 0)\) of the ABS notes and the weighted average maturity of the underlying assets \((T)\).

The default curve, \(P_d(t)\), refers to the default term structure, i.e., the cumulative default rate at time \(t\) (expressed as percentage of the initial outstanding principal amount of the asset pool or the initial number of assets). By the default distribution, we mean the (probability) distribution of the cumulative default rate at time \(T\).

The prepayment curve, \(P_p(t)\), refers to the prepayment term structure, i.e., the cumulative prepayment rate at time \(t\) (expressed as percentage of the initial outstanding principal amount of the asset pool or the initial number of assets). By the prepayment distribution, we mean the distribution of the cumulative prepayment rate at time \(T\).

There are two approaches to choose between when modelling the defaults and prepayments: the top-down approach (portfolio-level models) and the bottom-up approach (loan-level models). In the top-down approach one model the cumulative default and prepayment rates of the portfolio. This is exactly what is done with the deterministic models we shall present later in this chapter. The bottom-up approach, on the other hand, one models the individual loans default and prepayment behavior. A number of loan level models are presented.

The choice of approach depends on several factors, such as, the number of loans in the reference pool.

4.1 Deterministic default models

4.1.1 Conditional default rate

The Conditional (or Constant) Default Rate (CDR) approach is the simplest way to use to introduce defaults in a cash flow model. The CDR is a sequence of (constant) annual default rates applied to the outstanding pool balance in the beginning of the time period, hence the model is conditional on the pool history and therefore called conditional. The CDR is an annual default rate that can be translated into a monthly rate by using the single-monthly mortality (SMM) rate:

\[
SMM = 1 - (1 - CDR)^{1/12}.
\]

The SMM rates and the corresponding cumulative default rates for three values of CDR (2.5%, 5%, 7.5%) are shown in Figure 1. The CDRs were applied to a pool of asset with no
scheduled repayments or unscheduled prepayments, i.e., the reduction of the principal balance originates from defaults only.

An illustration of the CDR approach is given in Table 2 with SMM equal to 0.2%.

<table>
<thead>
<tr>
<th>Month</th>
<th>Pool balance (beginning)</th>
<th>Defaulted principal (%)</th>
<th>SMM (%)</th>
<th>Cumulative default rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100,000,000</td>
<td>200,000</td>
<td>0.20</td>
<td>0.2000</td>
</tr>
<tr>
<td>2</td>
<td>99,800,000</td>
<td>199,600</td>
<td>0.20</td>
<td>0.3996</td>
</tr>
<tr>
<td>3</td>
<td>99,600,400</td>
<td>199,201</td>
<td>0.20</td>
<td>0.5988</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>58</td>
<td>89,037,182</td>
<td>178,431</td>
<td>0.20</td>
<td>10.9628</td>
</tr>
<tr>
<td>59</td>
<td>88,859,108</td>
<td>178,074</td>
<td>0.20</td>
<td>11.1409</td>
</tr>
<tr>
<td>60</td>
<td>88,681,390</td>
<td>177,718</td>
<td>0.20</td>
<td>11.3186</td>
</tr>
<tr>
<td>61</td>
<td>88,504,027</td>
<td>177,363</td>
<td>0.20</td>
<td>11.4960</td>
</tr>
<tr>
<td>62</td>
<td>88,327,019</td>
<td>177,008</td>
<td>0.20</td>
<td>11.6730</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>119</td>
<td>78,801,487</td>
<td>157,919</td>
<td>0.20</td>
<td>21.1985</td>
</tr>
<tr>
<td>120</td>
<td>78,643,884</td>
<td>157,603</td>
<td>0.20</td>
<td>21.3561</td>
</tr>
</tbody>
</table>

Table 2: Illustration of Conditional Default Rate approach. The single monthly mortality rate is fixed to 0.2%. No scheduled principal repayments or prepayments from the asset pool.

It is common to report historical defaults (defaulted principal amounts) realised in a pool in terms of CDRs, monthly or quarterly. To calculate the CDR for a specific month, one first calculates the monthly default rate as defaulted principal balance during the month divided by the outstanding principal balance in the beginning of the month less scheduled principal repayments during the month. This monthly default rate is then annualised

\[
CDR = 1 - (1 - SMM)^2. \tag{1}
\]
Strengths and weaknesses

The CDR models is simple, easy to use and it is straight forward to introduce stresses on the default rate. It is even possible to use the CDR approach to generate default scenarios, by using a probability distribution of the cumulative default rate. However, it is too simple, since it assumes that the default rate is constant over time.

4.1.2 Default vector approach

In the default vector approach, the total cumulative default rate is distributed over the life of the deal according to some rule. Hence, the timing of the defaults is modelled. Assume, for example, that 24% of the initial outstanding principal amount is assumed to default over the life of the deal, that is, the cumulative default rate is 24%. We could distribute these defaults uniformly over the life of the deal, say 120 months, resulting in assuming that 0.2% of the initial principal balance defaults each month. If the initial principal balance is euro 100 million and we assume 0.2% of the initial balance to default each month we have euro 200,000 defaulting in every month. The first three months, five months in the middle and the last two months are shown in Table 3.

Note that this is not the same as the SMM given above in the Conditional Default Rate approach, which is the percentage of the outstanding principal balance in the beginning of the month that defaults. To illustrate the difference compare Table 2 (0.2% of the outstanding pool balance in the beginning of the month defaults) above with Table 3 (0.2% of the initial outstanding pool balance defaults each month). The SMM in Table 3 is calculated as the ratio of defaulted principal (200,000) and the outstanding portfolio balance at the beginning of the month. Note that the SMM in Table 3 is increasing due to the fact that the outstanding portfolio balance is decreasing while the defaulted principal amount is fixed.

<table>
<thead>
<tr>
<th>Month</th>
<th>Pool balance (beginning)</th>
<th>Defaulted principal</th>
<th>SMM (%)</th>
<th>Cumulative default rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100,000,000</td>
<td>200,000</td>
<td>0.2000</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>99,800,000</td>
<td>200,000</td>
<td>0.2004</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>99,600,000</td>
<td>200,000</td>
<td>0.2008</td>
<td>0.60</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>58</td>
<td>88,600,000</td>
<td>200,000</td>
<td>0.2257</td>
<td>11.60</td>
</tr>
<tr>
<td>59</td>
<td>88,400,000</td>
<td>200,000</td>
<td>0.2262</td>
<td>11.80</td>
</tr>
<tr>
<td>60</td>
<td>88,200,000</td>
<td>200,000</td>
<td>0.2268</td>
<td>12.00</td>
</tr>
<tr>
<td>61</td>
<td>88,000,000</td>
<td>200,000</td>
<td>0.2273</td>
<td>12.20</td>
</tr>
<tr>
<td>62</td>
<td>87,800,000</td>
<td>200,000</td>
<td>0.2278</td>
<td>12.40</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>119</td>
<td>76,400,000</td>
<td>200,000</td>
<td>0.2618</td>
<td>23.8</td>
</tr>
<tr>
<td>120</td>
<td>76,200,000</td>
<td>200,000</td>
<td>0.2625</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Table 3: Illustration of an uniformly distribution of the cumulative default rate (24% of the initial pool balance) over 120 months, that is, each month 0.2% of the initial pool balance is assumed to default. No scheduled principal repayments or prepayments from the asset pool.

Of course many other default timing patterns are possible. Moody’s methodology to rate
granular portfolios is one such example, where default timing is based on historical data, see Section 5.1. S&P’s apply this approach in its default stress scenarios in the cash flow analysis, see Section 5.2.

Strengths and weaknesses

Easy to use and to introduce different default timing scenarios, for example, front-loaded or back-loaded. The approach can be used in combination with a scenario generator for the cumulative default rate.

4.1.3 Logistic default model

The Logistic default model is used for modelling the default curve, that is, the cumulative default rate’s evolution over time. Hence it can be viewed as an extension of the default vector approach where the default timing is given by a functional representation. In its most basic form, the Logistic default model has the following representation:

\[P_d(t) = \frac{a}{(1 + be^{-c(t-t_0)})}, \]

where \(a, b, c, t_0 \) are positive constants and \(t \in [0, T] \). Parameter \(a \) is the asymptotic cumulative default rate; \(b \) is a curve adjustment or offset factor; \(c \) is a time constant (spreading factor); and \(t_0 \) is the time point of maximum marginal credit loss. Note that the Logistic default curve has to be normalised such that it starts at zero (initially no defaults in the pool) and \(P_d(T) \) equals the expected cumulative default rate.

From the default curve, which represents the cumulative default rate over time, we can find the marginal default curve, which describes the periodical default rate, by differentiating \(P_d(t) \). Figure 1 shows a sample of default curves (left panel) and the corresponding marginal default curves (right panel) with time measured in months. Note that most of the default take place in the middle of the deal’s life and that the marginal default curve is centered around month 60, which is due to our choice of \(t_0 \). More front-loaded or back-loaded default curves can be created by decreasing or increasing \(t_0 \).

Table 4 illustrates the application of the Logistic default model to the same asset pool that was used in Table 3. The total cumulative default rate is 24% in both tables, however, the distribution of the defaulted principal is very different. For the Logistic model, the defaulted principal amount (as well as the SMM) is low in the beginning, very high in the middle and then decays in the second half of the time period. So the bulk of defaults occur in the middle of the deal’s life. This is of course due to our choice of \(t_0 = 60 \). Something which is also evident in Figure 2.

The model can be extended in several ways. Seasoning could be taken into account in the model and the asymptotic cumulative default rate \((a) \) can be divided into two factors, one systemic factor and one idiosyncratic factor (see Raynes and Ruthledge (2003)).

The Logistic default model thus has (at least) four parameters that have to be estimated from data (see, for example, Raynes and Ruthledge (2003) for a discussion on parameter estimation).

Introducing randomness

The Logistic default model can easily be used to generate default scenarios. Assuming that we have a default distribution at hand, for example, the log-normal distribution, describing the distribution of the cumulative default rate at maturity \(T \). We can then sample an expected
Figure 2: Left panel: Sample of Logistic default curves (cumulative default rates). Right panel: Marginal default curves (monthly default rates). Parameter values: a is sampled from a log-normal distribution (with mean 20% and standard deviation 10%), $b = 1$, $c = 0.1$ and $t_0 = 60$.

<table>
<thead>
<tr>
<th>Month</th>
<th>Pool balance (beginning)</th>
<th>Defaulted principal (%)</th>
<th>SMM (%)</th>
<th>Cumulative default rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100,000,000</td>
<td>6,255</td>
<td>0.006255</td>
<td>0.006255</td>
</tr>
<tr>
<td>2</td>
<td>99,993,745</td>
<td>6,909</td>
<td>0.009090</td>
<td>0.013164</td>
</tr>
<tr>
<td>3</td>
<td>99,986,836</td>
<td>7,631</td>
<td>0.007632</td>
<td>0.020795</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>58</td>
<td>89,795,500</td>
<td>593,540</td>
<td>0.660991</td>
<td>10.204500</td>
</tr>
<tr>
<td>59</td>
<td>89,201,960</td>
<td>599,480</td>
<td>0.672048</td>
<td>10.798040</td>
</tr>
<tr>
<td>60</td>
<td>88,602,480</td>
<td>602,480</td>
<td>0.679981</td>
<td>11.397520</td>
</tr>
<tr>
<td>61</td>
<td>88,000,000</td>
<td>602,480</td>
<td>0.684636</td>
<td>12.000000</td>
</tr>
<tr>
<td>62</td>
<td>87,397,520</td>
<td>599,480</td>
<td>0.685923</td>
<td>12.602480</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>119</td>
<td>76,006,255</td>
<td>6,909</td>
<td>0.009089</td>
<td>23.993745</td>
</tr>
<tr>
<td>120</td>
<td>76,000,000</td>
<td>6,255</td>
<td>0.008230</td>
<td>24.000000</td>
</tr>
</tbody>
</table>

Table 4: Illustration of an application of the Logistic default model. The cumulative default rate is assumed to be 24% of the initial pool balance. No scheduled principal repayments or prepayments from the asset pool. Parameter values: $a = 0.2406$, $b = 1$, $c = 0.1$ and $t_0 = 60$.

cumulative default rates from the distribution and fit the 'a' parameter such that $P_d(T)$ equals the expected cumulative default rate. Keeping all the other parameters constant. Figure 3 shows a sample of Logistic default curves in the left panel, each curve has been generated from a cumulative default rate sampled from the log-normal distribution shown in the right panel.
Figure 3: Left panel: Sample of Logistic default curves (cumulative default rates). Parameter values: a is sampled from the log-normal distribution to the right, $b = 1$, $c = 0.1$ and $t_0 = 60$. Right panel: Log-normal default distribution with mean 0.20 and standard deviation 0.10.

Strengths and weaknesses

The model is attractive because the default curve has an explicit analytic expression. With the four parameters (a, b, c, t_0) many different transformations of the basic shape is possible, giving the user the possibility to create different default scenarios. The model is also easy to implement into a Monte Carlo scenario generator.

The evolutions of default rates under the Logistic default model has some important drawbacks: they are smooth, deterministic and static.

For the Logistic default model most defaults happen gradually and are a bit concentrated in the middle of the life-time of the pool. The change of the default rates are smooth. The model is, however, able of capturing dramatic changes of the monthly default rates.

Furthermore, the model is deterministic in the sense that once the expected cumulative default rate is fixed, there is no randomness in the model.

Finally, the defaults are modelled independently of prepayments.

4.2 Stochastic default models

As was discussed in the previous section the deterministic default models have limited possibilities to capture the stochastic nature of the phenomena they are set to model. In the present section we propose a number of models that incorporate the stylized features of defaults. We model the evolution of defaults with stochastic processes.

4.2.1 Lévy portfolio default model

The Lévy portfolio default model models the cumulative default rate on portfolio level. The default curve, i.e., the fraction of loans that have defaulted at time t, is given by:

$$P_d(t) = 1 - \exp(-X_t),$$

where $X = \{X_t, t \geq 0\}$ is a stochastic process. Because we are modelling the cumulative default rate the default curve $P_d(t)$ must be non-decreasing over time (since we assume that a defaulted
asset is not becoming cured). To achieve this we need to assume that $X = \{X_t, t \geq 0\}$ is non-decreasing over time, since then $\exp(-X_t)$ is non-decreasing. Furthermore, assuming that all assets in the pool are current ($P_d(0) = 0$) at the time of issue ($t = 0$) we need $X_0 = 0$. Our choice of process comes from the family of stochastic processes called Lévy process, more precisely the single-sided Lévy processes. A single-sided Lévy process is non-decreasing and the increments are through jumps.

By using a stochastic process to “drive” the default curve, $P_d(t)$ becomes a random variable, for all $t > 0$. In order to generate a default curve scenario, we must first draw a realization of the process $X = \{X_t, t \geq 0\}$. Moreover, $P_d(0) = 0$, since we start the Lévy process at zero: $X_0 = 0$.

As an example, let us consider a default curve based on a Gamma process $G = \{G_t, t \geq 0\}$ with shape parameter a and scale parameter b. The increment from time 0 to time t of the Gamma process, i.e., $G_t - G_0 = G_t$ (recall that $G_0 = 0$) is a Gamma random variable with distribution Gamma (at, b), for any $t > 0$. Consequently, the cumulative default rate at maturity follows the law $1 - e^{-G_T}$, where $G_T \sim$ Gamma (aT, b). Using this result, the parameters a and b can be found by matching the expected value and the variance of the cumulative default rate under the model to the mean and variance of the default distribution, that is, as the solution to the following system of equations:

$$
E \left[1 - e^{-G_T} \right] = \mu_d; \\
\text{Var} \left[1 - e^{-G_T} \right] = \sigma_d^2, \tag{2}
$$

for predetermined values of the mean μ_d and standard deviation σ_d of the default distribution. Explicit expressions for the left hand sides of (2) can be found, by noting that the expected value and the variance can be written in terms of the characteristic function of the Gamma distribution.

A sample of Gamma portfolio default curves are shown in Figure 4 together with the corresponding default distribution. The mean and standard deviation of the default distribution is $\mu_d = 0.20$ and $\sigma_d = 0.10$, respectively, which implies that $X_T \sim$ Gamma $(aT = 2.99, b = 12.90)$. Note that the realisations of the Gamma default curve shown are very different. There is one path that very early has a large jump in the cumulative default rate (above 10% in month 2) and then evolves with a few smaller jumps and ends at about 25% in month 120. In contrast to this path we have a realisation that stays almost at zero until month 59 before jumping to just below 10% and then at month 100 makes a very large jump to around 30%. What is obvious from Figure 4 is that the Gamma portfolio default model gives a wide spectrum of default scenarios, from front-loaded default curves to back-loaded.

Note that the default distribution shown in Figure 4 is generated by the model. In contrast, the default distribution in Figure 3 is an assumption used to generate default curves, in this case a log-normal distribution.

Strengths and weaknesses

The Lévy portfolio model is a stochastic portfolio-level approach to model the cumulative default rate. The model gives a wide range of default scenarios, from front-loaded default curves, where a majority of defaults takes place early, to back-loaded. The default curves are jump driven, increasing with random jump sizes.
4.2.2 Normal one-factor default model

The **Normal one-factor** model (Vasicek (1987) and Li (1995)) models individual loan behaviors and introduce correlation between loans. The model is also used in pricing CDOs and other portfolio credit derivatives and is also called the Gaussian copula model. The link between the Normal one-factor model and the Gaussian copula was made by Li (2000). There is a link between the Normal one-factor model and the structural default model by Merton (1974), which assumes that an obligor defaulted by the maturity of its obligations if the value of the obligor’s assets is below the value of its debt. In the Normal one-factor model we model the creditworthiness of an obligor through the use of a latent variable and records a default if the latent variable is below a barrier. The latent variable of an obligor is modelled as:

$$ Z_n = \sqrt{\rho} X + \sqrt{1-\rho} X_n, \quad n = 1, 2, \ldots, N, $$

(3)

where X is the systemic factor and $X_n, n = 1, 2, \ldots, n$ are the idiosyncratic factors, all are standard normal random variables (mean 0, standard deviation 1), and ρ is the correlation between two assets:

$$ \text{Corr}[Z_m, Z_n] = \rho, \quad m \neq n. $$

The nth loan defaulted by time t if

$$ Z_n \leq K_n^d(t), $$

where $K_n^d(t)$ is a preset, time dependent default barrier.

If we assume that the pool consist of large number of homogeneous assets, we can use the representative line approach and model each individual asset as the “average” of the assets in the pool. By doing this, we only need to calculate one default barrier $K^d(t)$ and $K_n^d(t) = K^d(t)$ for all n. The default barrier can be chosen such that the default time is exponentially distributed:

$$ P[Z_n \leq K^d(t)] = \Phi_{Z_n}(K^d(t)) = P[\tau < t] = 1 - e^{-\lambda t}, $$

where $\Phi_{Z_n} (\cdot)$ is the standard Normal cumulative distribution function. The λ parameter is set such that $P[Z_n \leq K^d(T)] = \mu_d$, with μ_d is the predetermined value for the mean of the default.
distribution. Note that $K^d(t)$ is non-decreasing in t, which implies that a defaulted loan stays defaulted and cannot be cured.

The correlation parameter ρ is set such that the standard deviation of the model match the standard deviation of the default distribution at time T_σ, σ_d.

Given a sample of (correlated) standard Normal random variables $Z = (Z_1, Z_2, ..., Z_N)$, the default curve is then given by

$$P_d(t; Z) = \frac{\#{\{Z_n \leq K^d(t)\}}}{N}, \quad t \geq 0.$$ \hfill (4)

In order to simulate default curves, one must thus first generate a sample of standard Normal random variables Z_n satisfying (3), and then, at each (discrete) time t, count the number of Z_i's that are less than or equal to the value of the default barrier K^d_t at that time.

The left panel of Figure 5 shows five default curves, generated by the Normal one-factor model (3) with $\rho \approx 0.121353$, such that the mean and standard deviation of the default distribution are 0.20 and 0.10. We have assumed in this realisation that all assets have the same default barrier. All curves start at zero and are fully stochastic, but unlike the Lévy portfolio model the Normal one-factor default model does not include any jump dynamics. The corresponding default distribution is again shown in the right panel.

![Normal one-factor default curve](image1)

![Probability density of the default rate at time T](image2)

Figure 5: Left panel: Sample of Normal one-factor default curves. Right panel: corresponding default distribution. The mean and standard deviation of the empirical default distribution is $\mu_d = 0.20$ and $\sigma_d = 0.10$.

Just as for the Lévy portfolio default model we would like to point out that the default distribution is generated by the model, in contrast to the Logistic model. In Figure 5, an example of a default distribution is shown.

Strengths and weaknesses

The Normal one-factor model is a loan-level approach to modelling the cumulative portfolio default rate. In the loan-level approach one has the freedom to choose between assuming a homogeneous or a heterogeneous portfolio. For a large portfolio with with quite homogeneous assets the representative line approach can be used, assuming that each of the assets in the portfolio behaves as the average asset. For a small heterogeneous portfolio it might be better to model the assets on an individual basis.
The Normal one-factor model can be used to model both the default and prepayment of an obligor, which will be evident in the section on prepayment modelling.

A known problem with the Normal one-factor model is that many joint defaults are very unlikely. The underlying reason is the too light tail-behavior of the standard normal distribution (a large number of joint defaults will be caused by a very large negative common factor X).

4.2.3 Generic one-factor Lévy default model

To introduce heavier tails one can use **Generic one-factor Lévy** models (Albrecher et al (2006)) in which the latent variable of obligor i is of the form

$$Z_n = Y_\rho + Y^{(n)}_{1-\rho}, \quad n = 1, 2, \ldots, N,$$

where Y_t and $Y^{(n)}_t$ are Lévy processes with the same underlying distribution L with distribution function $H_1(x)$. Each Z_n has by stationary and independent increment property the same distribution L. If $E[Y^2_t] < \infty$, the correlation is again given by:

$$\text{Corr}[Z_m, Z_n] = \rho, \quad m \neq n.$$

As for the Normal one-factor model, we again say that a borrower defaults at time t, if Z_n hits a predetermined barrier $K^d(t)$ at that time, where $K^d(t)$ satisfies

$$P \left[Z_n \leq K^d(t) \right] = 1 - e^{-\lambda t},$$

with λ determined as in the Normal one-factor model.

As an example we use the Shifted-Gamma model where $Y, Y_n, n = 1, 2, \ldots, N$ are independent and identically distributed shifted Gamma processes

$$Y = \{ Y_t = t\mu - G_t : t \geq 0 \},$$

where μ is a positive constant and G_t is a Gamma process with parameters a and b. Thus, the latent variable of obligor n is of the form:

$$Z_n = Y_\rho + Y^{(n)}_{1-\rho} = \mu - (G_\rho + G^{(n)}_{1-\rho}), \quad n = 1, 2, \ldots, N.$$

In order to simulate default curves, we first have to generate a sample of random variables $Z = (Z_1, Z_2, \ldots, Z_N)$ satisfying (5) and then, at each (discrete) time t, count the number of Z_i’s that are less than or equal to the value of the default barrier $K^d(t)$ at that time. Hence, the default curve is given by

$$P_d(t; Z) = \frac{\# \{ Z_n \leq K^d(t) : n = 1, 2, \ldots, N \}}{N}, \quad t \geq 0.$$

The left panel of Figure 6 shows five default curves, generated by the Gamma one-factor model (7) with $(\mu, a, b) = (1, 1, 1)$, and $\rho \approx 0.095408$, such that the mean and standard deviation of the default distribution are 0.20 and 0.10. Again, all curves start at zero and are fully stochastic. The corresponding default distribution is shown in the right panel. Compared to the previous three default models, the default distribution generated by the Gamma one-factor model seems to be squeezed around μd and has a significantly larger kurtosis. Again we do not have to assume a given default distribution, the default distribution will be generated by the model.
It should also be mentioned that the latter default distribution has a rather heavy right tail (not shown in the graph), with a substantial probability mass at the 100% default rate. This can be explained by looking at the right-hand side of equation (7). Since both terms between brackets are strictly positive and hence cannot compensate each other (unlike the Normal one-factor model), \(Z_i \) is bounded from above by \(\mu \). Hence, starting with a large systematic risk factor \(Y \), things can only get worse, i.e. the term between the parentheses can only increase and therefore \(Z_i \) can only decrease, when adding the idiosyncratic risk factor \(Y_i \). This implies that when we have a substantially large common factor, it is more likely that all borrowers will default, than with the Normal one-factor model.

\[
Z_i \leq H_T
\]

\[
\{Z_i \leq H_T\}
\]

Figure 6: Left panel: Sample of Gamma one-factor default curves. Right panel: corresponding default distribution. The mean and standard deviation of the empirical default distribution is \(\mu_d = 0.20 \) and \(\sigma_d = 0.10 \).

Strengths and weaknesses

The generic Lévy one-factor model is a loan-level model, just as the Normal one-factor model, but with the freedom to choose the underlying probability distribution from a large set of distributions. The distributions are more heavy tailed than the normal distribution, that is, give a higher probability to large positive or negative values. A higher probability that the common factor is a large negative number gives higher probability to have many defaults.

4.3 Deterministic prepayment models

4.3.1 Conditional Prepayment Rate

The Conditional (or Constant) Prepayment Rate (CPR) model is a top-down approach. It models the annual prepayment rate, which one applies to the outstanding pool balance that remains at the end of the previous month, hence the name conditional prepayment rate model. The CPR is an annual prepayment rate, the corresponding monthly prepayment rate is given by the single-monthly mortality rate (SMM) and the relation between the two is:

\[
SMM = 1 - (1 - CPR)^{1/12}.
\]
Strengths and weaknesses

The strength of the CPR model lies in its simplicity. It allows the user to easily introduce stresses on the prepayment rate.

A drawback of the CPR model is that the prepayment rate is constant over the life of the deal, implying that the prepayments as measured in euro amounts are largest in the beginning of the deal’s life and then decreases. A more reasonable assumption about the prepayment behavior of loans would be that prepayments ramp up over an initial period, such that the prepayments are larger after the loans have seasoned.\footnote{Discussed in Fabozzi and Kothari (2008) page 33.}

4.3.2 The PSA benchmark

The Public Securities Association (PSA) benchmark for 30-year mortgages\footnote{The benchmark has been extended to other asset classes such as home equity loans and manufacturing housing, with adjustments to fit the stylized features of those assets, Fabozzi and Kothari (2008).} is a model which tries to model the seasoning behavior of prepayments by including a ramp-up over an initial period. It models a monthly series of annual prepayment rates: starting with a CPR of 0.2% for the first month after origination of the loans followed by a monthly increase of the CPR by an additional 0.2% per annum for the next 30 months when it reaches 6% per year, and after that staying fixed at a 6% CPR for the remaining years. That is, the marginal prepayment curve (monthly fraction of prepayments) is of the form:

\[
\text{CPR}(t) = \begin{cases}
\frac{6\%}{30} t, & 0 \leq t \leq 30 \\
6\%, & 30 < t \leq 360,
\end{cases}
\]

\(t=1,2,\ldots,360\) months. Remember that this is annual prepayment rates. The single-monthly prepayment rates are

\[
\text{SMM}(t) = 1 - \left(1 - \text{CPR}(t)\right)^{1/12}.
\]

Speed-up or slow-down of the PSA benchmark is possible:

- 50 PSA means one-half the CPR of the PSA benchmark prepayment rate;
- 200 PSA means two times the CPR of the PSA benchmark prepayment rate.

Strengths and weaknesses

The possibility to speed-up or slow-down the prepayment speed is giving the model some flexibility.

The PSA benchmark is a deterministic model, with no randomness in the prepayment curve’s behaviour. And it assumes that the prepayment rate is changing smoothly over time, it is impossible to model dramatic changes in the prepayment rate of a short time interval, that is, to introduce the possibility that the prepayment rate suddenly jumps. Finally, under the PSA benchmark the ramp-up of prepayments always takes place during the first 30 months and the rate is after that constant.
4.3.3 A generalised CPR model

A generalisation of the PSA benchmark is to model the monthly prepayment rates with the same functional form as the CPR above. That is, instead of assuming that CPR(t) has the functional form above, we assume now that SMM(t) can be described like that. The marginal prepayment curve (monthly fraction of prepayments) is described as follows:

\[p_p(t) = \begin{cases} a_p t, & 0 \leq t \leq t_{0p} \\ a_p t_{0p}, & t_{0p} < t \leq T, \end{cases} \]

where \(a_p \) is the single-monthly prepayment rate increase.

The prepayment curve, i.e., the cumulative prepayment rate, is found by calculating the area under the marginal prepayment curve:

\[P_p(t) = \begin{cases} \frac{a_p t^2}{2}, & 0 \leq t \leq t_{0p} \\ \frac{a_p t_{0p}^2}{2} + a_p t_{0p}(t - t_{0p}), & t_{0p} < t \leq T \end{cases} \]

The model has two parameters:

- \(t_{0p} \): the time where one switches to a constant CPR (\(t_{0p} = 30 \) months in PSA);
- \(P_p(T) \): the cumulative prepayment rate at maturity. For example, \(P_p(T) = 0.20 \) means that 20% of the initial portfolio have prepaid at maturity \(T \). Can be sampled from a prepayment distribution.

Once the parameters are set, one can calculate the rate increase per month

\[a_p = \frac{P_p(T)}{\frac{t_{0p}^2}{2} + t_{0p}(T - t_{0p})}. \]

Introducing randomness

The generation of prepayment scenarios can easily be done with the generalised prepayment model introduced above. Assuming that we have a prepayment distribution at hand, for example, the log-normal distribution, describing the distribution of the cumulative prepayment rate at maturity \(T \). We can then sample an expected cumulative prepayment rate from the distribution, and fit the \(a_p \) parameter such that \(P_p(T) \) equals the expected cumulative prepayment rate. Figure 7 shows a sample of marginal prepayment curves and the corresponding cumulative prepayment curves.

Strengths and Weaknesses

The evolution of prepayment rates under the generalised CPR model is smooth and deterministic. The prepayment curve is smooth, no jumps are present, and it is completely determined once \(t_{0p} \) and \(P_p(T) \) are chosen. Furthermore, after \(t_{0p} \) the model assumes that the prepayment rate is constant.
Figure 7: Left panel: Sample of marginal prepayment curves (monthly fraction of prepayments) of the generalised CPR model. Right panel: The corresponding cumulative prepayment curves of the generalised CPR model. The prepayment distribution is assumed to be log-normal. The mean and standard deviation of the empirical prepayment distribution is $\mu_p = 0.20$ and $\sigma_p = 0.10$.

4.4 Stochastic prepayment models

4.4.1 Lévy portfolio prepayment model

The Lévy portfolio prepayment model is completely analogous to the Lévy portfolio default model described in Section 4.2.1.

4.4.2 Normal one-factor prepayment model

The Normal one-factor prepayment model starts from the same underlying philosophy as its default equivalent. The idea is to model prepayment as an event that occurs if the credit worthiness of the obligor is above a certain level, the so called prepayment barrier, just as default was assumed to occur if the credit worthiness of the obligor was below a barrier, the so called default barrier.

The asset’s latent variable is modelled by:

$$Z_n = \sqrt{\rho}X + \sqrt{1-\rho}X_n, \quad n = 1, 2, \ldots, N,$$

where X is the systemic factor and $X_n, n = 1, 2, \ldots, n$ are the idiosyncratic factors, all are standard normal random variables (mean 0, standard deviation 1), and ρ is the correlation between two assets: $\text{Corr}[Z_m, Z_n] = \rho, m \neq n$.

The prepayment barrier $K^p_n(t)$ is chosen such that the probability of prepayment before time t equals $P_p(t)$ in the generalised CPR model:

$$P[Z_n \geq K^p_n(t)] = 1 - \Phi_{Z_n}[K^p_n(t)] = P_p(t).$$

Thus, $K^p_n(t) = \Phi^{-1}[1-P_p(t)],$ where Φ^{-1} denotes the inverse of the standard Normal distribution function. Note that $K^p_n(t)$ is non-increasing in t, which implies that a prepaid loan does not reappear in the pool and, thus, that the prepayment curve is non-decreasing.
Figure 8: Example of a default barrier and a prepayment barrier in a one-factor model.

Figure 8 shows how a prepayment barrier and a default barrier can be combined in a one-factor model.

The prepayment curve is defined as:

$$P_p(t; Z) = \frac{1}{N} \{ Z_n \geq K_p(t); n = 1, 2, ..., N \}, \quad t \geq 0.$$ (10)

Figure 9: Left panel: Sample of Normal one-factor prepayment curves. Right panel: Corresponding prepayment distribution. The mean and standard deviation of the empirical prepayment distribution is $\mu_p = 0.20$ and $\sigma_p = 0.10$.

Comparing the prepayment curves in Figure 9 with the curves generated by the generalised CPR model in the right panel of Figure 7, one can see that they are similar in shape due to the fact that the prepayment barrier is chosen such that the probability of prepayment of an individual obligor equals the cumulative prepayment rate given by the generalised CPR model. However, the prepayment curves generated by the Normal one-factor model are stochastic as can be seen from the non-linear behaviour of the curves.
Note that the prepayment distribution is generated by the model. This is in contrast with the prepayment distribution shown for the generalised CPR model in Figure 7 where we assumed the log-normal distribution.

Strengths and weaknesses

The evolution of the prepayment curve is stochastic, not deterministic. Furthermore, with the Normal one-factor model it is possible to model both default and prepayment of a single obligor at the same time.

See also comments on the Normal one-factor default model.

5 Rating agencies methodologies

The present section gives a summary of two of the major rating agencies quantitative methodologies to provide ratings to ABSs, in particular to ABSs backed by SME loans.

5.1 Moody’s

In this section we focus on Moody’s approach to rating SME transactions, although the basic methodologies is similar for other asset classes. As was already mentioned in Chapter 2, Moody’s rating is an expected loss assessment, which incorporates the assessment of both the likelihood of default and the severity of loss, given default. The quantitative rating is based on the results from a quantitative model, which calculates the Expected Loss and the Expected Weighted Average Life of an ABS note. This quantitative rating is combined with a qualitative analysis, which includes an operational overview of the originator and the servicer and legal issues (transfer of assets and bankruptcy), to derive a final rating (Moody’s (2001) and Moody’s (2007a)).

The quantitative rating methodology used depends on the size and granularity of the underlying SME portfolio. For small or non-granular portfolios, such as CDO’s, Moody’s takes a bottom-up approach and use factor models (typically based on the Gaussian-copula approach, for example the Normal one-factor model presented previously) for the analysis. For granular portfolios Moody’s adopt a default distribution (Lognormal or Normal Inverse) approach, to model the cumulative default rate at the deal maturity. The factor models are implemented in Moody’s CDOROM™ and Moody’s STARFINDER™ (see Moody’s (2006b)); the granular approach in Moody’s ABSROM™ (see Moody’s (2006a)).

In general, Moody’s classifies SME portfolios with more than 1,000 assets and no major concentrations as ABS SME.12

General information guidelines describing the data that Moody’s would like to receive from the originator for SME securitisation transactions are given in Moody’s (2007a).

5.1.1 Non-Granular portfolios

For concentrated, heterogeneous pools the main tool for deriving a default distribution is Moody’s CDOROM™. The portfolio default distribution will be directly derived from Monte Carlo simulations, which simulates the default of each individual asset based on a factor model

12To discriminate non-granular, granular and intermediate portfolios, Moody’s calculates the Effective Number of Obligors, based on the Herfindahl index (see Moody’s (2007c)).
as described previously in Section 4.2.2. The factor models used are typically based on one factor:

$$Z_n = \sqrt{\rho_c} X_c + \sqrt{1 - \rho_c} X_n,$$

or, on two factors:

$$Z_n = \sqrt{\rho_c} X_c + \sqrt{\rho_i} X_i + \sqrt{1 - \rho_c - \rho_i} X_n,$$

where X_c is the common global factor, X_i is an industry factor, X_n, $n = 1, 2, \ldots, N$ is the individual firm specific factor, and ρ_c and ρ_i is the global inter-industry and the sector specific intra-industry correlation assumptions, respectively, see Moody’s (2007d).

The input parameters in the model are the probability of default of each individual asset and the asset correlation. The individual default probability is typically derived from either (i) public ratings, (ii) credit estimates or (iii) a mapping between the originator’s internal rating system and Moody’s rating scale. The correlation is derived from Moody’s corporate correlation framework adopted in global CDOs. However, Moody’s stresses the correlation parameters from 3% to 6% depending on the specific characteristics of the portfolio, to account for a higher geographical concentration and industrial clustering typically present in SME pools.\(^{13}\)

In contrast to the approach for granular portfolios described below, the default timing is directly generated in the factor models since the default of each individual asset is simulated.

In CDOROM\(^ {TM}\) the recovery rates are stochastic and assumed to be distributed according to a Beta distribution applied to each defaulted asset.\(^ {14}\)

To derive a rating, the present value of the loss for the note and the note’s weighted average life are calculated for each simulation run and the averages over all simulations are taken as estimates of the expected loss and the expected weighted average life. (A more detailed description is given in the section on granular portfolios.)

The rating of the note is found from Moody’s Idealised Cumulative Expected Loss Table, which map the Expected Average Life and Expected Loss combination to a specific quantitative rating. An example of such a table is given in Moody’s (2000b).

5.1.2 Granular portfolios

For granular portfolios a default distribution for the total cumulative default rate (expressed as per cent of initial portfolio outstanding principal amount) over the life of the pool is assumed, typically a Normal Inverse\(^ {15}\) distribution (previously Moody’s used the Lognormal distribution as standard, but this has changed (Moody’s (2007c))). The default distribution is characterised by two parameters: the mean and the standard deviation, that has to be estimated. Moody’s estimates these parameters from historical static cohort data provided by the originator. This data is typically given in a Static cumulative default rate table describing different cohorts (or vintages) of pools of loans and the cumulative default rate over a number of periods after origination. From this data estimates of the mean and standard deviation is derived. The basic methodology of how to extrapolate, clean and adjust for seasoning is described in Moody’s (2005b). The parameter estimation based on historical cohort data is (almost) only applicable at the time the transaction is issued, because it is rarely that updated cohort data is made available at a later stage after the closing date. To handle this problem Moody’s has developed a methodology to revise the default assumptions over the life of an ABS transaction (Moody’s

\(^{13}\)Moody’s (2007c), p. 4.

\(^{15}\)The Normal Inverse distribution is an approximation of the default distribution if the Normal one-factor model is used for a large homogeneous portfolio, see Appendix A and Moody’s (2003) and Moody’s (2007d).
The method takes as input transaction specific performance data, such as delinquency rates, historical periodic default or loss rates and historical portfolio redemption rates.

Based on the default distribution a set of Default Scenarios are derived and the scenario probability is given by the default distribution. The default scenarios are 0.00%, 0.10%, 0.20%, . . . and the scenario probability is the probability that the default rate falls between two consecutive default scenarios. Figure 10 illustrates the Normal Inverse distribution and the 20% default scenario with its associated probability.

![Default Distribution](image)

Figure 10: Illustration of a Normal Inverse default distribution. The 20% Default Scenario and its associated probability is marked with a bar. The asset correlation was assumed to be ρ = 20%, and the mean cumulative default rate 20%. The default barrier was estimated as described in the section on the Normal one-factor default model.

To distribute the defaults over the life of the pool a Default Timing vector is defined. For each period, the corresponding element in the Default Timing vector is the percentage of the total cumulative default rate that will be applicable in that period. The Default Timing vector is used to calculate the outstanding amount of the defaulted loans per period in each default scenario:

\[
\text{Defaulted Amount}(\text{period } i, \text{ scenario } s) = \text{Default Timing}(\text{period } i) \times \text{Default Rate}(\text{scenario } s) \times \text{Original Portfolio Amount}.
\]

The default timing is preferably derived from historical static cohort data on defaults (Moody’s (2007c)). For granular portfolios the recovery rate is assumed to be stochastic with a Normal distribution and is applied on a portfolio basis. Historical recovery data provided by the originator is used in order to determine the recovery rate. In ABSROM™ a Recovery Timing vector is used to specify the timing of the recoveries.

16Moody’s (2006a), p. 34.
17Moody’s (2007c), p. 8. What is meant with “applied on a portfolio basis” is not clear. Using a Normal distribution for the recovery rate implies that the recovery rate can become negative. However, Moody’s argues that by the Law of Large Numbers, if all LGDs are independent and identically distributed, the average LGD will be almost equal to its expected value for high default rates, which implies that the right tail of the loss distribution will not depend on the shape of the LGD distribution for each asset. See discussion in footnotes 30 and 31 in Moody’s (2003), p. 18 and 19, respectively.
For the prepayments Moody’s assumes a fixed annual constant prepayment rate (CPR), which is estimated from the originator’s historical data.

To come to a rating Moody’s ABSROM™ calculates the Expected Average Life (or weighted average life) and the Expected Loss of the note (see Moody’s (2006a), p. 32-33). The Expected Average Life of the note is given by:

\[
\begin{align*}
& \text{Last Default Scenario} \\
& \sum_{s=1\text{st Default Scenario}} \text{Weighted Average Life}(\text{scenario } s) \times \text{Probability}(\text{scenario } s),
\end{align*}
\]

where Weighted Average Life(\text{scenario } s) is:

\[
\begin{align*}
& \text{Legal Maturity Date} \\
& \sum_{i=1\text{st Period}} \frac{\text{Outstanding Note Amount}(\text{Period } i, \text{scenario } s)}{\text{Original Note Amount} \times \text{Number of Periods per Annum}}.
\end{align*}
\]

The expected loss is calculated as the sum-product of the probability of each default scenario and the corresponding Relative Net Present Value-Loss. For each default scenario, the Relative Net Present Value-Loss for a note is calculated by discounting the cashflows (both interest and principal) received on that note with a discount rate which is equal to the rate of that note and by comparing it to the initial outstanding amount on the note (Moody’s (2006a), p. 33):

\[
\text{Relative NPV Loss}(\text{Scenario } s) = \frac{\text{Nominal Initial Amount} - \text{NPV Cashflow}(\text{Scenario } s)}{\text{Nominal Initial Amount}}.
\]

The expected loss is then given by:

\[
\text{Expected Loss} = \sum_{s=1\text{st Default Scenario}} \text{Relative NPV Loss}(\text{Scenario } s) \cdot \text{Probability}(\text{Scenario } s).
\]

For a fixed rate note the discount rate will be the promised coupon rate and for a floating rate note it will be the realised benchmark rate plus the note’s margin.

The rating of the note is found from Moody’s Idealised Cumulative Expected Loss Table, which maps the Expected Average Life and Expected Loss combination to a specific quantitative rating. An example of such a table is given in Moody’s (2000b).

V Scores and Parameter Sensitivity

Moody’s has recently introduced two changes to the way structured finance ratings are presented: V Scores and Parameter Sensitivities. Moody’s V Scores “provide a relative assessment of the quality of available credit information and the potential variability around various inputs to a rating determination.”.\(^{18}\) The Parameter Sensitivities “provide a quantitative/model-indicated calculation of the number of rating notches that a Moody’s-rated structured finance security may vary if certain input parameters used in the initial rating process differed.”.\(^{19}\)

It is intended that the V Scores shall provide a ranking of transactions by the potential of rating changes due to uncertainty around the assumptions made during the rating process. V Scores are a qualitative assessment of the potential of rating changes due to, among others, data quality, historical performance, transaction complexity, and the transaction governance that underly the ratings.

To analyse the parameter sensitivity, typically, the two key input parameters that have the greatest impact within the sector will be stressed. For example, the mean portfolio default rate and the mean recovery rate can be assumed to vary between 12%, 14% and 16% and 30%, 40% and 50%, respectively. For each stressed scenario (i.e. each combination of default rate and recovery rate in our example) a new loss distribution is generated under which the notes are re-assessed.

5.2 Standard and Poor’s

As mentioned before, the meaning of Standard and Poor’s (S&P’s) rating is the assessment of timely payment of interest and the ultimate payment of principal no later than the legal final maturity date. It is only the credit quality of structure finance securities that is addressed, and the ratings framework is based on the likelihood of default and not on expected loss or loss given default (Standard and Poor’s (2007b)).

S&P’s employs a principle-based methodology for rating structured finance securities, outlined in Standard and Poor’s (2007b). The core methodologies for analysing and rating securitisation transactions contains five key areas of analysis: credit quality of the securitised assets; payment structure and cash flow mechanics; legal and regulatory risks; operational and administrative risks; and counterparty risk. We will focus on the quantitative parts in the rating process here, namely credit quality of the securitised assets and payment structure and cash flow mechanics.

5.2.1 Credit quality of defaulted assets

For most ABSs, RMBSs and CDOs backed by pools of loans, receivables or corporate debt the credit quality analysis focuses on determining under “worst-case” scenarios the portion of the original asset pool that will default and the portion of these defaulted assets that can be recovered. From this the potential ultimate loss on the debt issue can be derived (Standard and Poor’s (2007b), p. 7).

S&P’s has three main SME transaction categories (Standard and Poor’s (2009a), p. 2):

- Granular SME transactions;
- Transactions with lumpy assets or high sector exposure; and
- Hybrid bespoke transactions.

SME transactions with highly granular characteristic with assets spread across different sectors and industries are categorised as granular transactions. Typically a granular transaction is a securitisation of a cross-section of a bank’s SME loan portfolio. In the second category, the portfolio has a skewed risk profile due to an uneven and high exposure to a small number of obligors or economic sectors. Hybrid bespoke transactions are often created for the purpose of obtaining repo financing under central bank financing schemes and contains a mix of SME assets together with large corporate loans and residential and commercial mortgages.

Based on these categories, different analytical approaches and assumptions are applied to rate transactions backed by SME loans (Standard and Poor’s (2009a), p. 3):

- The actuarial approach;
- Probability of default and stochastic modelling approach; and
• Secured real estate default analysis.

In the actuarial approach, base case portfolio default rates and recovery rates are derived using historical gross loss rates and recovery data. These default and recovery rates are then used to stress and simulate defaults and recoveries over time in different rating scenarios. Typically this approach is applied to granular SME transactions.

The second approach, probability of default and stochastic modelling, is based on S&P’s CDO Evaluator® model. The model uses Monte Carlo simulation to assess the credit quality of an asset portfolio, taking as input the credit rating, notional exposure and maturity of each asset, as well as the correlation between each pair of assets. The output from the model is a probability distribution of potential portfolio default rates, which is the base for a set of scenario default rates (SDRs), one for each rating level. The SDR is the portfolio loss an ABS must be able to withstand without defaulting. The CDO Evaluator® is based on the Gaussian copula model by Li (2000).

The final approach is used for assets that are secured on real estate collateral and is a weighted average foreclosure frequency (W AFF) and weighted average loss severity (W ALS) approach. To determine the likely default and loss on a loan underlying loan level characteristics, such as, loan-to-value (LTV) ratio, seasoning and regional concentrations are used.

The above described approaches are carried out together with a detailed cash flow analysis, which is described below.

CDO Evaluator® model

As mentioned above the CDO Evaluator® model uses Monte Carlo simulations to assess the credit quality of the asset pool. The output of this assessment is a probability distribution of potential portfolio default rates. The CDO Evaluator® model is a bottom-up approach, where each individual asset is modelled. The modelling is based on the Gaussian copula model proposed by Li (2000). In fact, the Gaussian copula model is the Normal factor model “translated” into the language of copula functions. Hence, both Moody’s and S&P’s base their quantitative modelling of non-granular portfolios on the same mathematical model.

The CDO Evaluator® allows for both fixed and stochastic (beta distributed) recoveries, it is however not clear if stochastic recoveries are applicable for SMEs.

From the probability distribution of default rates scenario default rates (SDRs) are derived. The SDR for a specific rating level is the largest portfolio default rate such that the probability of defaults in the portfolio exceeding the SDR is not greater than the probability of default for the given rating level and time horizon.

For example, assume that we want to find the SDR for the ‘AA’ rating level and a time horizon of 10 years. We lookup the probability of default associated with the ‘AA’ rating in a credit curve table. A credit curve table contains the probability of default for each rating level for a series of maturities. Let us say that the probability of default for a 10 year ‘AA’ rated tranche is 1.0%. We now have to find the largest portfolio default rate from the default rate distribution for which the likelihood of exceeding this value is less than or equal to 1.0%. This is illustrated in Figure 11. The SDR equals 34% in this example and the likelihood that the defaults in the portfolio exceeds 34% is 0.96%.

5.2.2 Cash flow modelling

The cash flow analysis evaluates the availability of funds for timely payment of interest and ultimate payment of principal following the conditions of each rated class of notes and is used to determine the credit support levels for each rated class of notes. The cash flow analysis is done for each rated class of notes by stressing the cash flow from the asset pool. The severity of the stress scenarios applied to the cash flow depend on the desired rating. The cash flow analysis described here is the one used in combination with the CDO Evaluator® model and is based on the following reports: Standard and Poor’s (2004b), Standard and Poor’s (2006a), and Standard and Poor’s (2006b).21

The stress tests are performed with respect to among other things:22

- Default timing;
- Delinquencies (if applicable);
- Recovery rates and timing;
- Interest rate hedging (including interest rate stresses);
- Prepayments (if applicable); and
- Senior fees.

We describe here only the default timing and the recovery timing stresses.

21It is not clear if the cash flow analysis done in combination with the actuarial approach is the same from the documentation. In Standard and Poor’s (2003) p. 11 a short description is made, but it does not clarify if the same set of stress scenarios for each rating level is used in combination with the actuarial approach as with the CDO Evaluator® model approach.

22Standard and Poor’s (2004b) and Standard and Poor’s (2006a). These reports are only discussing the cash flow modelling of stressed scenarios in combination with the CDO Evaluator® model.
Default timing stresses

S&P’s applies four standard default patterns and a few additional default patterns (saw-tooth patterns and expected case patterns) to stress the cash flow. We will here describe the four standard patterns, given in Table 5, and refer the interested reader to Standard and Poor’s (2004b) for a description of the additional patterns. Each pattern expresses the percentage of the cumulative default rate that occurs every year once defaults starts. As can be seen from Table 5, all defaults are assumed to occur during four or five years once defaults starts. The annual default rates given in Table 5 can be distributed evenly across the four quarters of the year with defaults occurring on the last day of each quarter. This applies to all years except the first year of the transaction, in which the entire default amount is supposed to occur at the last day of the year, because S&P’s assumes that some time elapse before defaults occur in a newly gathered portfolio. An exception to this is the case when the portfolio contains a large concentration of low credit quality assets.

It is important to note that the default patterns are applied to the original par balance of the portfolio. As an example, assume that we apply Pattern I to a cumulative default rate of 20% and a pool with original balance $100. Then the original pool par balance experience defaults of 3%, 6%, 6%, 3% and 2%, respectively, in the five years the pattern is covering, or, equivalently, $3, $6, $6, $3 and $2.

These patterns are combined with default timing stresses, which means that the start of a specific pattern is delayed by a number of years. That is, the cash flow analysis is run for a specific pattern starting in year 1, and then for the same pattern starting in year 2, and so on. The starting times of the patterns are delayed to the point where the final default in the pattern occurs in the same year as the portfolio balance is expected to mature, which depends on the length of the reinvestment period and the weighted average life of the assets (given by the weighted average life covenant in the offering circular). These default timing stresses, that is, the delays, are different for different rating levels.

An illustration of how the default scenarios can look like when Pattern I in Table 5 is combined with the default timing stresses given in Table 6 for a ‘AAA’ or ‘AA’ rated tranche

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern I</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Pattern II</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Pattern III</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Pattern IV</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>-</td>
</tr>
</tbody>
</table>

for a transaction with five years reinvestment period and a WAL covenant of four years is shown in Table 7. Note that in the table the annual defaults are shown as a percentage of the total cumulative defaults.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
<th>Year 8</th>
<th>Year 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 7: Example of default scenarios for analysing a 'AAA' or 'AA' tranche when the reinvestment period is 5 years and WAL covenant is a 4 years. Annual defaults as a percentage of cumulative defaults.

Recoveries

Recovery rates are established on a transaction-by-transaction basis taking into account factors such as: the level of experience of the originator; transaction-specific investment guidelines and replenishment criteria; workout procedures and timing of expected recoveries; and location of the defaulted obligor. S&P’s has established recovery ranges per country for each transaction, partly based on transaction-specific data available.26

Recoveries on defaulted loans are assumed to occur over a three-year workout period, with the recovery timing as given in Table 8. Note that the recoveries are realised in the end of the period.

Achieving a desired rating

The stress scenarios used in the cash flow analysis aim to assess if the ABS under consideration can withstand the stresses associated with the sought rating level and therefore can receive the corresponding rating level.

For each stress scenario, the output from the cash flow analysis is the break even default rate (BDR) the portfolio can withstand and still generate adequate cash flow to meet contractual payments of interest and principal on the class of notes subject to the particular stress scenario.

26Standard and Poor’s (2004a), p. 5.
Table 8: Standard & Poor’s recovery timing assumption as percentage of total recovery rate assumed in each year during workout period for SME loans. Source: “Credit Risk Tracker Strengthens Rating Analysis of CLOs of European SME Loans”, Standard and Poor’s, June 10, 2004, p. 6.

The break even default rate is found by first finding the minimum credit enhancement level given by the subordination structure, i.e., the note’s attachment point, such that the note’s overall credit performance is adequate for the targeted rating level. This minimum credit enhancement is then translated into a portfolio default rate, which is the so called break even default rate.

Thus, for each rated class of notes, the result of the cash flow analysis is a set of break even default rates (BDRs), one for each stress scenario. The desired rating of a class of notes is achieved by comparing the BDRs with the SDRs for that rating level. Assume, for example, that we pick the minimum BDR for each rating level and compare it with the corresponding SDR. If the SDR for the 'AA' rating level is 34%, then a tranche can receive a 'AA' rating if the corresponding minimum BDR for that tranche is equal to or greater than 34%.

To pick out the BDR for each rated class that should be compared with the corresponding SDR, S&P’s uses a percentile approach, which differentiates the application of BDRs across rating categories.27 The break even percentiles by rating is shown in Table 9.

<table>
<thead>
<tr>
<th>Tranche rating</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>5th</td>
</tr>
<tr>
<td>AA</td>
<td>10th</td>
</tr>
<tr>
<td>A</td>
<td>35th</td>
</tr>
<tr>
<td>BBB</td>
<td>50th</td>
</tr>
<tr>
<td>BB</td>
<td>60th</td>
</tr>
<tr>
<td>B</td>
<td>70th</td>
</tr>
</tbody>
</table>

Table 9: Break even percentiles by rating. Note that for all rating categories 'AA', 'A' and so until 'B' include rating subcategories, for example, 'AA' percentile also applies to 'AA+' and 'AA-'. Source: “Update To General Cash Flow Analytics Criteria For CDO Securitizations”, Standard and Poor’s, October 17, 2006, p. 3.

In the example above, this would mean that the 10th percentile BDR should be equal to or greater than 34% if the tranche should receive a 'AA' rating.

5.3 Conclusions

The interpretation of a rating is different over the various rating agencies. Moody’s rating is an assessment of the expected loss that a class of notes may experience, while S&P’s rating is an

27Earlier the minimum BDR produced by the cash flow analysis was compared to the scenario default rate (SDR) for each rating level, see Standard and Poor’s (2006b).
assessment of the probability of default of the class of notes and addresses the timely payment of interest and the ultimate payment of principal.

Both Moody’s and S&P’s discriminate between granular and non-granular SME portfolios and applies different approaches to the two categories.

For non-granular SME portfolios both rating agencies use a loan-by-loan or bottom-up approach and model each individual asset in the pool. Moody’s uses its CDOROM™ tool, which uses Normal factor models (with dependence structures based on the Gaussian copula approach); S&P’s is using its CDO Evaluator® model, which is based on the Gaussian copula approach. In both cases, thus, are the underlying mathematical tool to introduce dependence in the portfolios the Gaussian copula approach. Monte Carlo simulations are used to generate defaults in the asset pool and to derive a default distribution. The difference between the two methodologies lies in the use of the tool or model.

In Moody’s methodology, the default scenario generated by each Monte Carlo simulation is fed into the cash flow model and the losses on the ABSs are derived. This is done for a large number of simulations and an estimate of the expected loss on each ABS is derived. The cash flow analysis is thus an integrated part of the simulations. The expected losses are mapped to a rating for each ABS using Moody’s loss rate tables.

In S&P’s methodology, the Monte Carlo simulations generate a probability distribution of potential portfolio default rates that is used to derive a set of scenario default rates (SDRs), one for each rating level. Each SDR represents the maximum portfolio default rate that an ABS with the desired rating should be able to withstand without default. These SDRs are then used to create different stressed rating scenarios that are applied in a cash flow analysis, which assesses if the ABS under consideration can withstand the stresses associated with the targeted rating level and therefore can receive the corresponding rating level.

For granular SME portfolios, Moody’s uses its ABSROM™ tool, which uses a default rate distribution to generate default scenarios and the corresponding likelihood of each scenario. The default rate distribution’s mean and standard deviation is estimated using historical data. Running a cash flow model with the different default scenarios, stressing the default timing, the expected loss on the notes are calculated. S&P’s applies its actuarial approach, for granular SME portfolios, which is based on deriving base case default and recovery rates from historical data in order to stress defaults over the life of the transaction in different rating scenarios in a cash flow analysis.

6 Case studies

6.1 A two note structure

Our first case study is a structure with two classes of notes backed by a homogeneous portfolio of 2,000 level-pay loans, each of them paying principal and interest monthly.28 This example was used in Jönsson et al (2009) to study the influence of different default and prepayment model combinations on the rating, expected loss and weighted aver life of the notes. We use this example to illustrate the concepts discussed in Chapter 2 and 3 and to discuss model risk and parameter sensitivity.

The pool is static, new loans are not added to the pool. The interest rate is fixed. The asset characteristics are shown in Table 10.

28 The following example is based on an example in Raynes and Ruthledge (2003).
ASSETS

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial balance of the asset pool</td>
<td>V_0</td>
<td>$30,000,000</td>
</tr>
<tr>
<td>Number of loans in the asset pool</td>
<td>N_0</td>
<td>2,000</td>
</tr>
<tr>
<td>Weighted Average Maturity of the assets</td>
<td>WAM</td>
<td>10 years</td>
</tr>
<tr>
<td>Weighted Average Coupon of the assets</td>
<td>WAC</td>
<td>12% p.a.</td>
</tr>
<tr>
<td>Payment frequency</td>
<td></td>
<td>monthly</td>
</tr>
<tr>
<td>Reserve target</td>
<td>r_T</td>
<td>5% (CB*)</td>
</tr>
<tr>
<td>Eligible reinvestment rate</td>
<td></td>
<td>3.92% p.a.</td>
</tr>
<tr>
<td>Loss-Given-Default</td>
<td>LGD</td>
<td>50%</td>
</tr>
<tr>
<td>Lag</td>
<td></td>
<td>5 months</td>
</tr>
</tbody>
</table>

Table 10: Asset characteristics. * CB: Current Balance.

This pool of assets backs two classes of notes: A (senior) and B; both having fixed coupons. The Notes are amortized (either pro-rata or sequential) during the life of the deal. A reserve fund is used as an additional credit enhancement. The reserve fund target is 5% of outstanding balance of the pool. The characteristics of the Notes are shown in Table 11.

LIABILITIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial balance of the senior note</td>
<td>A_0</td>
<td>$24,000,000</td>
</tr>
<tr>
<td>Premium of the senior note</td>
<td>r_A</td>
<td>7% p.a.</td>
</tr>
<tr>
<td>Initial balance of the subordinated note</td>
<td>B_0</td>
<td>$6,000,000</td>
</tr>
<tr>
<td>Premium of the subordinated note</td>
<td>r_B</td>
<td>9% p.a.</td>
</tr>
<tr>
<td>Servicing fee</td>
<td>r_{sf}</td>
<td>1% p.a.</td>
</tr>
<tr>
<td>Servicing fee shortfall rate</td>
<td>r_{sf-sh}</td>
<td>20% p.a.</td>
</tr>
<tr>
<td>Allocation method</td>
<td></td>
<td>Pro-rata; or Sequential</td>
</tr>
</tbody>
</table>

Table 11: Characteristics of the Notes.

The cash collections each month from the asset pool consists of interest payments and principal collections (scheduled repayments and unscheduled prepayments). These collections constitutes together with the principal balance of the reserve account Available Funds at the end of each month.

The Available Funds are distributed according to the waterfall structure:

1. Servicing fees;
2. Class A Interest;
3. Class B Interest;
4. Class A Principal;
5. Class B Principal;
6. Reserve account reimbursement;
7. Residual Payment.
The waterfall is an example of a combined waterfall, since both interest and principal is included in Available Funds (“cash is cash”).

6.1.1 Cash flow modelling

We model the cash flow monthly: \(t = 1, 2, \ldots, T \), where \(T \) is the weighted average maturity of the loans.

Cashflow from the pool

1) Asset behavior

We start with modelling the asset behavior for the current month, say \(t \). The number of performing loans in the pool at the end of month \(t \) is denoted by \(N(t) \). We denote by \(n_D(t) \) and \(n_P(t) \) the number of loans defaulting and prepaying, respectively, during the month. Delinquencies are not modelled.

2) Defaulted principal

The defaulted principal is based on previous month’s ending principal balance times number of defaulted loans in current month:

\[
P_D(t) = B(t-1) \cdot n_D(t),
\]

where \(B(t) \) is the outstanding principal amount at the end of month \(t \) of an individual loan and \(B(0) \) is the initial outstanding principal amount.

3) Interest collections

The interest collected in month \(t \) is calculated on the performing loans, i.e., the previous month’s ending number of loans less defaulted loans in current month:

\[
I(t) = (N(t-1) - n_D(t)) \cdot B(t) \cdot (1 + r_L),
\]

where \(N(0) \) is the initial number of loans in the portfolio. It is assumed that defaulted loans pay neither interest nor principal.

4) Principal collections

The scheduled repayments are based on the performing loans from the end of previous month less defaulted loans:

\[
P_{SR}(t) = (N(t-1) - n_D(t)) \cdot B_A(t),
\]

where \(B_A(t) = B(t-1) - B(t) \) is the scheduled principal amount paid from one single loan.

Prepayments are equal to the number of prepaid loans times the ending loan balance. This means that we first let all performing loans repay their scheduled principal and then we assume that the prepaying loans pay back the outstanding principal after scheduled repayment has taken place:

\[
P_{UP}(t) = B(t) \cdot n_P(t).
\]
5) Recoveries
We will recover a fraction of the defaulted principal after a time lag, the recovery lag:

\[P_{\text{Rec}}(t) = P_D(t - \text{RecoveryLag}) \times (1 - LGD(t)), \]

where \(LGD(t) \) is the loss given default. In our example we assume that the recovery lag is 5 months and that the loss given default is 50%.

6) Available Funds
The available funds in each month, assuming that total principal balance of the reserve account \(RA_{PB}(t) \) is added, is:

\[F_0(t) = I(t) + P_{SR}(t) + P_{UP}(t) + P_{\text{Rec}}(t) + RA_{PB}(t), \]

where the zero subscript indicates that it is before any expenses have been paid.

7) Note replenishment amount
The total outstanding principal amount on the asset pool has decreased with:

\[P_{\text{Red}}(t) = P_D(t) + P_{SR}(t) + P_{UP}(t), \]

and to make sure that the notes remain fully collateralised we have to reduce the outstanding principal amount of the notes with the same amount.

Loss allocation
An alternative to adding defaulted principal to the note redemption amount is to allocate pool losses in reverse order of seniority. In this case, excess spread is not used to redeem the notes with an amount equal to defaulted principal, instead the most junior outstanding note’s principal amount is reduced by \(P_D(t) \).

Cashflow out / Waterfall
1) Servicing fee
The first item in the waterfall is the servicing fee, which is based on the ending asset pool principal balance in previous month multiplied by the servicing fee rate, plus any shortfall in the servicing fee from previous months multiplied with the servicing fee shortfall rate. After the servicing fee has been paid we update available funds, which is either zero or the initial available funds less the servicing fee paid, which ever is greater.

2) Class A Interest
The Class A Interest Due is the sum of the outstanding principal balance of the A notes at the beginning of month \(t \) (which is equal to the ending principal balance in month \(t - 1 \)) plus any shortfall from previous month multiplied by the A notes interest rate. We assume the interest rate on shortfalls is the same as the note interest rate. The Class A Interest Paid is the minimum of available funds from step 1 and the Class A Interest Due. If there was not enough available funds to cover the interest payment, the shortfall is carried forward to the next month. After
the Class A interest payment has been made we update available funds. If there is a shortfall, the available funds are zero, otherwise it is available funds from level 1 less Class A Interest Paid.

3) Class B Interest
The Class B interest payment is calculated in the same way as the Class A interest payment.

4) Class A Principal
The principal payment to the Class A Notes and the Class B Notes are based on the note replenishment amount. How this amount is distributed depends on the allocation method used. If pro rata allocation is applied, the notes share the principal reduction in proportion to their fraction of the total initial outstanding principal amount. In our case, 80% of the available funds should be allocated to the Class A Notes. The Class A Principal Due is this allocated amount plus any shortfall from previous month.

On the other hand if we apply sequential allocation, the Class A Principal Due is the minimum of the outstanding principal amount of the A notes and the sum of the note redemption amount and any Class A Principal Shortfall from previous month, that is, we should first redeem the A notes until zero before we redeem the B notes.

The Class A Principal Paid is the minimum of the available funds from level 3 and the Class A Principal Due. The available funds after principal payment to Class A is zero or the difference between available funds from level 3 and Class A Principal Paid, which ever is greater. Note that if there is a shortfall, then available funds are zero.

5) Class B Principal
If pro rata allocation is applied, the Class B Principal Due is the allocated amount (20% of the available funds in our example) plus any shortfall from previous month.

The Class B Principal Due, under a sequential allocation scheme is zero as long as the Class A Notes are not redeemed completely. After that the Class B Principal Due is the minimum of the outstanding principal amount of the B notes and the sum of the principal reduction of the asset pool and any principal shortfall from previous month.

The Class B Principal Paid is the minimum of the available funds from level 4 and the class B principal due. The available funds after principal payment to note B is zero or the difference between available funds from level 4 and class B principal paid, which ever is greater. Note that if there is a shortfall, available funds are zero.

6) Reserve account reimbursement
The principal balance of the reserve account at the end of the month must be restored to the target amount, which in our example is 5% of the outstanding balance of the asset pool. If enough available funds exists after the Class B principal payment, the reserve account is fully reimbursed, otherwise the balance of the reserve account is equal to the available funds after level 5 and a shortfall is carried forward.

7) Residual Payments
Whatever money that is left after level 6 is paid as a residual payment to the issuer.
Loan loss allocation

If loan losses are allocated in reverse order of seniority, the notes outstanding principal amounts first have to be adjusted before any calculations of interest and principal due. The pro rata allocation method will have one additional change, the principal due to the Class A Notes and Class B Notes must now be based on the current outstanding balance of the notes after loss allocation.

Pari passu

In the above waterfall Class A Notes interest payments are ranked senior to Class B Notes interest payments. Assume that the interest payments to Class A Notes and Class B Notes are paid pari passu instead. Then Class A Notes and Class B Notes have equal right to the available funds after level 1, and level 2 and 3 in the waterfall become effectively one level. Similarly, we can also assume that class A and class B principal due are allocated pro rata and paid pari passu.

For example, assume that principal due in month t to Class A Notes and Class B Notes is $P_{AD}(t) = 75$ and $P_{AD}(t) = 25$, respectively, and that the available amount after level 3 is $F_3(t) = 80$. In the original waterfall, Class A receives all its due principal and available amount after Class A principal is $F_3(t) = 5$. Class B receives in this case $P_{BP}(t) = 5$ and the shortfall is $P_{BS}(t) = 20$. If payments are done pari passu instead, Class A receives $P_{AP}(t) = 80 \times 75/100 = 60$ and Class B $P_{BP}(t) = 80 \times 25/100 = 20$, leading to a shortfall of $P_{AS}(t) = 20$ for Class A and $P_{BS}(t) = 5$ for Class B.

6.1.2 Numerical results

To this ABS structure we applied the mentioned default and prepayment models in different combinations analysing the rating, weighted average life and internal rate of return of the notes model dependence and also their sensitivity to changes in mean cumulative default rates and mean cumulative prepayment rates. We refer to Jönsson et al (2009) for the full study. Here we discuss the model risk and parameter uncertainty present in rating ABSs related to default modeling.

The ratings are based on cumulative expected loss, estimated by Monte Carlo simulations with one million scenarios. The losses on the notes are computed by calculating the notes internal rate of return (IRR) and comparing it to the promised yields. The difference between the yield and IRR is defined as the loss. The expected loss is given by adding the losses in each scenario and divide by the number of scenarios. For each scenario we also calculate the expected weighted average lives of the notes by the same method. Having calculated the expected loss and the expected weighted average life we can map these estimates to get a rating using Moody’s idealized cumulative expected loss rates table.

The numerical results are based on four default models: Normal one-factor model, Logistic model, Lévy portfolio model, and Gamma one-factor model. The prepayments are modelled by the generalised CPR model and the mean prepayment rate is assumed to be 20%.

Model risk

Model risk is omnipresent in the rating of the two notes in the case study. Table 12 shows the ratings of the Class A Notes and the Class B Notes. If we let the Normal one-factor model be our benchmark, we can measure the model risk by the number of notches the rating differs for the
different default models within each column, that is, for a fixed mean default rate assumption. When mean default rate is 10%, we can observe that the rating output from the Gamma one-factor model differs from the Normal one-factor model by one notch. The other two models does not result in any rating differences. On the other hand increasing the mean default rate assumption to 20% and 40% we can observe discrepancies among all four models.

The rating of the Class B Notes is even more sensitive to model choice than the Class A Notes. Already for the 10% default mean assumption the rating differs by one or three notches. For 20% mean default rate the rating difference is three to four notches and the difference is two to three notches at 40% mean default rate.

<table>
<thead>
<tr>
<th>Default model</th>
<th>Class A Notes</th>
<th>Class B Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal one-factor</td>
<td>µₜₐₜ = 10%</td>
<td>µₜₐₜ = 10%</td>
</tr>
<tr>
<td>Logistic</td>
<td>Aaa (–)</td>
<td>Aaa (–)</td>
</tr>
<tr>
<td>Lévy portfolio</td>
<td>Aaa (0)</td>
<td>Aaa (0)</td>
</tr>
<tr>
<td>Gamma one-factor</td>
<td>Aa1 (1)</td>
<td>Aa1 (1)</td>
</tr>
</tbody>
</table>

Table 12: Ratings of the Class A Notes and Class B Notes with pro-rata allocation of principal. The numbers in parentheses are the rating changes (number of notches) compared to Normal one-factor model, assuming the same mean default rate (µₜₐₜ), i.e., column-wise comparison. Prepayment is modelled with the generalised CPR model. Mean cumulative prepayment rate µₚ = 0.20. The rating is based on cumulative expected loss.

Parameter sensitivity
We can use the same rating outputs as in Table 12 to analyse the rating outcomes sensitivity to changes in the mean default rate for each of the four default models. Table 13 shows the results of the rating when the mean cumulative default rate assumption (10%, 20%, 40%) changes. From the results we may conclude that when increasing the average cumulative default rate the credit rating of the notes stays the same or is lowered for all default models. The rating of the Class A Notes changes with two notches when the Normal one-factor model is used, and with two to four notches for the other models. For the Class B Notes, the rating change is seven notches for the Normal one-factor model and up to eight for the others.

<table>
<thead>
<tr>
<th>Default model</th>
<th>Class A Notes</th>
<th>Class B Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal one-factor</td>
<td>µₜₐₜ = 10%</td>
<td>µₜₐₜ = 10%</td>
</tr>
<tr>
<td>Logistic</td>
<td>Aaa (–)</td>
<td>Aaa (–)</td>
</tr>
<tr>
<td>Lévy portfolio</td>
<td>Aaa (0)</td>
<td>Aaa (0)</td>
</tr>
<tr>
<td>Gamma one-factor</td>
<td>Aa1 (–)</td>
<td>Aa1 (–)</td>
</tr>
</tbody>
</table>

Table 13: Ratings of the Class A Notes and Class B Notes with pro-rata allocation of principal. The numbers in parentheses are the rating changes (number of notches) compared to µₜₐₜ = 10% mean default rate, i.e., row-wise comparison. Prepayment is modelled with the generalised CPR model. Mean cumulative prepayment rate µₚ = 0.20. The rating is based on cumulative expected loss.
Conclusions

With this case study we highlighted the model risk and the influence of parameter uncertainty when rating ABSs. The model risk was assessed by comparing three different default models with a benchmark model, the Normal one-factor model. What can be observed for a low cumulative default rate assumption (10%) was that there was no or just one notch difference in rating for the senior notes and one to three notches difference for the junior notes. However, increasing the cumulative default rate to a high number (40%) the rating differed with as much as three notches for the senior notes and four notches for the junior notes. Thus, for high cumulative default rates the model risk becomes more significant.

The ratings sensitivity to the cumulative default rate assumption was studied by analysing the number of notches the ratings changed for a given default model when the default rate increased. As could be expected, the ratings are very dependent on the cumulative default rate assumption. For the junior notes the rating differed with as much as seven to eight notches, when the cumulative default rate changes from 10% to 40%. For the senior notes the changes were one to four notches.

6.2 Geldilux TS 2005 S.A.

The Geldilux transaction is a true sale securitisation of short-term loans originated by Bayerische Hypo- und Vereinsbank (HVB) and extended by HVB Banque Luxembourg S.A. (HVL).

The issuer, Geldilux TS 2005 S.A., issued three series of floating rate tranchéd notes with different maturity profiles plus fixed rate liquidity notes, backed by the loan portfolio on the 17 June 2005 (Deal Closing Date).

The transaction parties are presented in Table 14.

Originator:	Bayerische Hypo- und Vereinsbank Aktiegesellschaft (HVB), Germany.
Seller:	HVB Banque Luxembourg S.A. (HVL)
Servicer:	HVB
Transaction Servicer:	HVL
Interest Rate Swap Counterparty:	HVL
Currency Swap Swap Counterparty:	HVL
Credit Support Provider:	Bayerische Landesbank, Germany.
Backstop Currency Swap Counterparty:	UBS Limited, UK.
Rating Agencies:	Moody’s and Fitch.

Table 14: Transaction parties in the Geldilux deal.

6.2.1 Structural features

The Notes

There are three series of notes plus liquidity notes issued by Geldilux and backed by the loan portfolio. The characteristics of the notes are listed in Table 15.

The proceeds of the three series are used to by the loan portfolio from the originator. The proceeds from the liquidity notes are used to fund a liquidity facility, the issuer interest reserve account.
Interest on the notes are paid on quarterly basis in arrears, with the interest based on 3-month EURIBOR plus a spread, depending on the series and class of notes. The payment frequency changes as a series of notes start to amortise. During the amortisation period of a series of notes the interest is paid monthly and the index rate is 1-month EURIBOR.

<table>
<thead>
<tr>
<th>Class of Notes</th>
<th>Initial Principal Amount (EUR)</th>
<th>Scheduled Maturity</th>
<th>Applicable Rate of Interest</th>
<th>CE** (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class A</td>
<td>2,101,000,000</td>
<td>Oct. 2008</td>
<td>EURIBOR* + 0.14%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Class B</td>
<td>36,300,000</td>
<td>Oct. 2008</td>
<td>EURIBOR* + 0.24%</td>
<td>2.85%</td>
</tr>
<tr>
<td>Class C</td>
<td>25,300,000</td>
<td>Oct. 2008</td>
<td>EURIBOR* + 0.57%</td>
<td>1.70%</td>
</tr>
<tr>
<td>Class D</td>
<td>11,000,000</td>
<td>Oct. 2008</td>
<td>EURIBOR* + 1.7%</td>
<td>1.20%</td>
</tr>
<tr>
<td>Class E</td>
<td>4,400,000</td>
<td>Oct. 2008</td>
<td>EURIBOR* + 6%</td>
<td>1.00%</td>
</tr>
<tr>
<td>Class F</td>
<td>22,000,000</td>
<td>Oct. 2008</td>
<td>EURIBOR* + 11%</td>
<td></td>
</tr>
<tr>
<td>Series 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class A</td>
<td>1,241,500,000</td>
<td>April 2009</td>
<td>EURIBOR* + 0.15%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Class B</td>
<td>21,450,000</td>
<td>April 2009</td>
<td>EURIBOR* + 0.26%</td>
<td>2.85%</td>
</tr>
<tr>
<td>Class C</td>
<td>14,950,000</td>
<td>April 2009</td>
<td>EURIBOR* + 0.58%</td>
<td>1.70%</td>
</tr>
<tr>
<td>Class D</td>
<td>6,500,000</td>
<td>April 2009</td>
<td>EURIBOR* + 2.4%</td>
<td>1.20%</td>
</tr>
<tr>
<td>Class E</td>
<td>2,600,000</td>
<td>April 2009</td>
<td>EURIBOR* + 6.5%</td>
<td>1.00%</td>
</tr>
<tr>
<td>Class F</td>
<td>13,000,000</td>
<td>April 2009</td>
<td>EURIBOR* + 12%</td>
<td></td>
</tr>
<tr>
<td>Series 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class A</td>
<td>1,910,000,000</td>
<td>Dec. 2010</td>
<td>EURIBOR* + 0.17%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Class B</td>
<td>33,000,000</td>
<td>Dec. 2010</td>
<td>EURIBOR* + 0.28%</td>
<td>2.85%</td>
</tr>
<tr>
<td>Class C</td>
<td>23,000,000</td>
<td>Dec. 2010</td>
<td>EURIBOR* + 0.6%</td>
<td>1.70%</td>
</tr>
<tr>
<td>Class D</td>
<td>10,000,000</td>
<td>Dec. 2010</td>
<td>EURIBOR* + 2.9%</td>
<td>1.20%</td>
</tr>
<tr>
<td>Class E</td>
<td>4,000,000</td>
<td>Dec. 2010</td>
<td>EURIBOR* + 7%</td>
<td>1.00%</td>
</tr>
<tr>
<td>Class F</td>
<td>20,000,000</td>
<td>Dec. 2010</td>
<td>EURIBOR* + 13%</td>
<td></td>
</tr>
<tr>
<td>Total Amount</td>
<td>5,500,000,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquidity Notes</td>
<td>13,750,000</td>
<td>Dec. 2010</td>
<td>3.5%</td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Note characteristics in the Geldilux deal. * 3-month EURIBOR during the revolving period and 1-month EURIBOR during the amortisation period of any series of notes. ** Credit Enhancement.

The initial ratings by Fitch and Moody’s of the notes are given in Table 16.

Revolving Period

There is a revolving period ending June 2010. The replenishment is controlled by *portfolio limits* such as:

- Weighted Average Term max 90 days;
- Weighted Average Loan Margin min 1% per annum;
- Euro equivalent of the Swiss Francs loans max Euro 1,800,000,000;
<table>
<thead>
<tr>
<th>Class of Notes</th>
<th>Moody’s</th>
<th>Fitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 1 Class A Notes</td>
<td>Aaa</td>
<td>AAA</td>
</tr>
<tr>
<td>Series 1 Class B Notes</td>
<td>A1</td>
<td>A</td>
</tr>
<tr>
<td>Series 1 Class C Notes</td>
<td>Baa2</td>
<td>BBB</td>
</tr>
<tr>
<td>Series 1 Class D Notes</td>
<td>Ba2</td>
<td>BB</td>
</tr>
<tr>
<td>Series 1 Class E Notes</td>
<td>B2</td>
<td>B</td>
</tr>
<tr>
<td>Series 1 Class F Notes</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Series 2 Class A Notes</td>
<td>Aaa</td>
<td>AAA</td>
</tr>
<tr>
<td>Series 2 Class B Notes</td>
<td>A1</td>
<td>A</td>
</tr>
<tr>
<td>Series 2 Class C Notes</td>
<td>Baa2</td>
<td>BBB</td>
</tr>
<tr>
<td>Series 2 Class D Notes</td>
<td>Ba2</td>
<td>BB</td>
</tr>
<tr>
<td>Series 2 Class E Notes</td>
<td>B2</td>
<td>B</td>
</tr>
<tr>
<td>Series 2 Class F Notes</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Series 3 Class A Notes</td>
<td>Aaa</td>
<td>AAA</td>
</tr>
<tr>
<td>Series 3 Class B Notes</td>
<td>A1</td>
<td>A</td>
</tr>
<tr>
<td>Series 3 Class C Notes</td>
<td>Baa2</td>
<td>BBB</td>
</tr>
<tr>
<td>Series 3 Class D Notes</td>
<td>Ba2</td>
<td>BB</td>
</tr>
<tr>
<td>Series 3 Class E Notes</td>
<td>B2</td>
<td>B</td>
</tr>
<tr>
<td>Series 3 Class F Notes</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Liquidity Notes</td>
<td>Aaa</td>
<td>AAA</td>
</tr>
</tbody>
</table>

Table 16: Note ratings in the Geldilux deal at deal closing date 17 June, 2005.

- Geographical concentration;
- Borrower concentration;
- Sector concentration.

There are two purchase suspension periods, during which amortisation of Series 1 notes respectively Series 2 notes are amortised. During the purchase suspension periods collected principal is first used to amortise the relevant notes before used for replenishment. Replenishment can also be stopped and the deal start to amortise due to certain trigger events.

The scheduled maturities of the loans in the portfolio is also part of the portfolio limits, such as at any time until series 1 scheduled maturity date, the aggregate amount of loans with scheduled maturity prior to the series 1 scheduled maturity date is greater than or equal to the initial outstanding principal amount of the series 1 notes. Similar formulations for the other two series scheduled maturity dates. This is included to make sure that there will be enough principal collections available to amortise the notes (not taking loan losses into account).

Interest priority of payments

The interest priority of payments can be summarised as follows:

1. Fees and taxes payable by the issuer;
2. Transaction servicer payments and fees;
3. Fees, costs and expenses to the trustee;
4. Other fees, costs and expenses;
5. Restor the credit balance of the issuer interest reserve account;
6. Pay accrued interest to all classes of notes (including liquidity notes);
7. Swap termination payments;
8. Shareholder payments (annually);
9. Payments to the seller;
10. Principal payments to redeem the liquidity notes;
11. Residual amounts.

Interest payments are done in order of seniority among classes in each series and pro rata among the respectively class over all series, that is, first interest is paid to all class A notes and liquidity notes on a pro rata basis, then class B notes and so on. Any interest shortfalls for any class of notes (except the liquidity notes) due to timing mismatch or moratorium may be drawn from the issuer interest reserve account.

Note that interest payments to all classes of notes are ranked senior to the principal redemption of liquidity notes.

Note amortisation

As already seen the liquidity notes are amortised using interest collections.

During the purchase suspension periods available principal distribution amounts will be allocated to redeem the series 1 or 2 notes, respectively, on a sequential basis and according to seniority within the series (sequential).

During a wind-down event (early amortisation) all notes are redeemed with payments allocated across all series on a pro rata basis and sequential within each series.

Triggers

There are three (quantitative) trigger types present in the deal: a cumulative default trigger, a cumulative loss trigger and a delinquency trigger. Trigger types, trigger levels, and trigger consequences are listed in Table 17.

<table>
<thead>
<tr>
<th>Trigger Type</th>
<th>Trigger Consequence</th>
<th>Operator</th>
<th>Trigger Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Defaults</td>
<td>Early amortisation</td>
<td>></td>
<td>0.95%</td>
</tr>
<tr>
<td>Cumulative Losses</td>
<td>Early amortisation</td>
<td>></td>
<td>0.80%</td>
</tr>
<tr>
<td>Delinquencies</td>
<td>Stop replenishment</td>
<td>></td>
<td>1.60%</td>
</tr>
</tbody>
</table>

Table 17: Triggers in the Geldilux deal. All triggers are active from 17 June, 2005 (closing date) to 10 June, 2010 (series 3 scheduled maturity date).

To the quantitative triggers more qualitative triggers are added, such as, downgrade of the rating of the servicer or the transaction servicer and swap terminations. They also result in a wind-down event, that is, early amortisation.
Early redemption can take place following a *clean-up call*, which means that the seller exercises its right to purchase all remaining outstanding loans at their then current market value. The clean-up call can only take place if the aggregate outstanding principal amount of the remaining loans in the portfolio represents less than 10% of the aggregate outstanding principal amount of all loans in the portfolio at the closing date.

Loss allocation

Loan losses are allocated to the notes (except the liquidity notes) in *reverse order of seniority*, that is, first Class F notes’ principal amount is reduced (pro rata), second the Class E notes’ (pro rata), and so on.

6.2.2 The Loan Portfolio

The loan portfolio\(^{29}\) comprises loans denominated in euro and Swiss Francs offered by HVB’s branch offices under the Euro-Loan Programme to large and medium-sized companies and small businesses, including self-employed professionals (such as physicians or dentists) and natural persons. The loans are obtained for a variety of short-term purposes, including working capital, liquidity, import financing, or interim financing for real estate loans. The terms of the loans range from a few days to one, two, three, six or twelve months. All loans are fixed rate loans and total interest and principal is payable as a bullet amount at loan maturity. The fixed rate can be divided into a base rate and a loan margin component. The base rate is typically indexed to a benchmark rate (such as EURIBOR). *Loan renewals* are possible on a capital-only basis (i.e., the same amount of principal is lent, but the interest rate changes), or on a capital-and-interest basis (i.e., both the amount of principal and interest change). In both cases, however, the renewal results in a new Loan from a legal point of view.

Any loan collateral is held by HVB on behalf of HVL. Generally, the Loan Collateral does not secure only one specific Loan. HVB and HVL have different kinds of credit exposures to their customers at the same time and such customers may have an additional unused credit line from HVB under the global credit line. The Loan Collateral generally secures the entire credit exposure to each Borrower of HVL or HVB on a *pro rata* basis.

Moody’s points out that because the collateral “remains with HVB leaving the issuer in the position of an unsecured creditor in case either the originator or the servicer becomes insolvent.”\(^{30}\) However, Moody’s believes that having a HVB rating linked wind-down event trigger in place will make the event of having a debtor and a HVB default within the short amortisation period following a Wind-Down Event is “extremely remote”.\(^{31}\)

Delinquent and default loan receivables

A loan receivable means any loan receivable that is more than one day overdue with its interest and/or principal payments. If the interest and/or principal payments are more than 29 days overdue, or the borrower is insolvent, the loan receivable is declared a defaulted loan receivable.\(^{32}\)

6.2.3 Risks

Currency and interest rate risks

As interest and principal on the notes are payable in euro, while the amounts payable by a number of borrowers are paid in Swiss Francs, the issuer and the noteholders are exposed to cross-currency risk. This risk is mitigated by the issuer entering a currency swap agreement. Under the currency swap agreement the issuer pays all Swiss Francs payments it receives during a collection period and, in return, on each interest payment date the swap counterparty will make the equivalent payment in euro calculated by reference to the contractually fixed exchange rate. The currency swap counterparty is HVL.

As amounts of interest payable on the loans are at fixed rates, while the interest payable on the notes (except the liquidity notes) are at a EURIBOR floating rate, the issuer and the noteholders are exposed to interest rate risk. This risk is mitigated by means of an interest rate swap agreement. Under the interest rate swap agreement the issuer is obliged to pay all fixed interest rates collections (less loan margins) it receives during an interest collection period and, in return, on each interest payment date the swap counterparty makes a floating interest payment calculated by reference to 3-month EURIBOR (during amortisation period 1-month). The interest rate swap counterparty is HVL.

Counterparty risks

The counterparty risks originate from the origination and servicing of the loan portfolio (HVB and HVL) and the swap agreements (HVL plus Bayerische Landsbank and UBS Ltd, London, UK.)

If the appointment of the servicer (HVB) or the transaction servicer (HVL) is terminated, the issuer shall appoint a substitute servicer or transaction servicer. This will likely result in delays in collection and servicing of the loan portfolio during the servicing transition having adverse effect on the noteholders. There is also a risk that an equivalent level of performance on collections and the administration of the loans cannot be maintained by any replacement of the servicer or the transaction servicer, “since many of the servicing and collection techniques currently employed were developed by the Servicer and the TransactionServicer.” Thus, the termination of the appointment of the servicer or the transaction servicer might result in liquidity shortfalls. See further discussion under liquidity risk. To protect the noteholders a Wind-Down Event occurs as a result of a failure to find a substitute servicer or transaction servicer.

Another risk is that the servicer or the transaction servicer becomes insolvent. In such a situation amounts collected from the loan portfolio by one of them and not transferred further may be subject to attachment by the creditors of the insolvent entity. A servicer or transaction servicer insolvency will result in a Wind-Down Event.

The issuer will rely upon the performance by the interest rate swap counterparty to be able to meet its interest payment obligations under the notes. The interest rate swap counterparty is HVL, which as pointed out by Moody’s already initially did not satisfy the swap criteria of being rated at least A1 or Prime-1. HVL therefore appointed Bayerische Landsbank as credit

33Geldilux-TS-2005 S.A. Offering Circular p. 53-54 plus Moody’s PSR p. 5
36This statement is done on p. 52 in the offering circular. However, by definition a “true sale” should imply that the accounts of the servicer and the transaction servicer, respectively, should no be subject not attachment by creditors.
support provider under the interest rate swap, in accordance with Moody’s swap guidelines.

If the interest rate swap counterparty defaults in respect of its obligations under the swap agreement and the credit support provider defaults under its obligations, the issuer will be obliged to enter into a replacement interest rate swap agreement with another entity (appropriately rated in accordance with the rating agencies’ swap criteria). Without a replacement interest rate swap agreement the noteholders are exposed to the risk that issuer will be able to pay interest on the notes to the extent of the fixed rates of interest collected during the interest collection periods. A failure to enter into a replacement agreement will result in a Wind-Down Event.

The issuer relies upon the performance by the currency swap counterparty to be able to meet its payment obligations under the notes. If the currency swap counterparty defaults in respect of its obligations under the agreement and no replacement agreement has been entered into, a Wind-Down Event will be the result. A failure to enter into a replacement swap agreement will expose the noteholders to currency risk, because the issuer only can convert Swiss Francs collection amounts to euro at the then prevailing exchange rate.

HVL is the currency swap counterparty and since it did not satisfy the rating agencies’ swap criteria at closing date HVL entered into a contingent novation agreement with UBS Ltd, London, UK, and will act as backstop currency swap counterparty. If HVL defaults under its obligations as currency swap counterparty the currency swap agreement is novated to UBS Ltd. If the credit support provider or the backstop currency swap counterparty no longer complies with the rating agencies’ swap criteria and has not been replaced by a successor within 30 days a Wind-Down Event is triggered.

Moody’s made the following remark about the credit support provider:

“In case the credit support provider does not comply with the Moody’s rating criteria anymore or revokes its function and is not replaced within 30 days or HVL transfers all its rights and obligations under the swap to a third party satisfying the Moody’s swap criteria, or put in place daily mark-to-market collateral in accordance with Moody's guidelines, a wind-down event with regard to the portfolio is triggered (i.e. the portfolio becomes static and begins to amortise).”

Liquidity risk

Timing mismatches between the loan maturities (at which interest is paid) and interest payment dates at which note interest is payable can result in interest shortfalls, that is, mismatches between the spreads the issuer is obliged to pay to the note holders and the margin it receives under the loans. To mitigate this risk a liquidity facility is available in the structure, called the Issuer Interest Reserve Account. The issuer interest reserve account was funded on the closing date from the proceeds of the liquidity notes.

The liquidity facility may also be used in respect of interest shortfalls resulting from a liquidity interest shortfalls in case of a moratorium event in respect of the servicer or the transaction servicer.

38 OC p. 54.
6.2.4 Performance

The Geldilux-TS-2005 transaction paid down all Series 1 and Series 2 notes, except Class F notes, according to their respectively scheduled maturities, as can be seen in Table 18. Any notes that are not redeemed at the scheduled maturity date will remain outstanding until the final maturity date in December 2012 at the latest and payments of principal will be made on interest payment dates if recoveries on defaulted loans are available.

The cumulative defaults in the pool is low and was EUR 1,700,000 at the reporting date in September 2009.43

<table>
<thead>
<tr>
<th>Class of Notes</th>
<th>Initial Principal Amount (EUR)</th>
<th>Current Balance (EUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class A</td>
<td>2,101,000,000</td>
<td>0</td>
</tr>
<tr>
<td>Class B</td>
<td>36,300,000</td>
<td>0</td>
</tr>
<tr>
<td>Class C</td>
<td>25,300,000</td>
<td>0</td>
</tr>
<tr>
<td>Class D</td>
<td>11,000,000</td>
<td>0</td>
</tr>
<tr>
<td>Class E</td>
<td>4,400,000</td>
<td>0</td>
</tr>
<tr>
<td>Class F</td>
<td>22,000,000</td>
<td>238,000</td>
</tr>
<tr>
<td>Series 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class A</td>
<td>1,241,500,000</td>
<td>0</td>
</tr>
<tr>
<td>Class B</td>
<td>21,450,000</td>
<td>0</td>
</tr>
<tr>
<td>Class C</td>
<td>14,950,000</td>
<td>0</td>
</tr>
<tr>
<td>Class D</td>
<td>6,500,000</td>
<td>0</td>
</tr>
<tr>
<td>Class E</td>
<td>2,600,000</td>
<td>0</td>
</tr>
<tr>
<td>Class F</td>
<td>13,000,000</td>
<td>141,000</td>
</tr>
<tr>
<td>Series 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class A</td>
<td>1,910,000,000</td>
<td>1,910,000,000</td>
</tr>
<tr>
<td>Class B</td>
<td>33,000,000</td>
<td>33,000,000</td>
</tr>
<tr>
<td>Class C</td>
<td>23,000,000</td>
<td>23,000,000</td>
</tr>
<tr>
<td>Class D</td>
<td>10,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>Class E</td>
<td>4,000,000</td>
<td>4,000,000</td>
</tr>
<tr>
<td>Class F</td>
<td>20,000,000</td>
<td>20,000,000</td>
</tr>
<tr>
<td>Total Amount</td>
<td>5,500,000,000</td>
<td>2,000,379,000</td>
</tr>
<tr>
<td>Liquidity Notes</td>
<td>13,750,000</td>
<td>0</td>
</tr>
</tbody>
</table>

The credit performance of the pool might deteriorate due to the current economical climate and Moody’s placed GELDILUX-TS-2005 S.A. (together with 37 other European SME ABS deals) on review for possible downgrade on March 23, 2009, with the following motivation:

“Today’s rating actions reflect Moody’s revised anticipations for the performance of the European SME sector in the current down cycle. Specifically, Moody’s has increased its probability of default (PD) assumption on SME pools across Europe to incorporate expectations...”

that European SME default rates are likely to greatly exceed the levels observed in historical performance data. Moody’s currently has a negative outlook for the European SME loan sector, which has increasingly shown signs of weakness in terms of credit performance. The sector is further stressed by the anticipated limited refinancing opportunities for EMEA non-financial corporate issuers rated Baa and below over the next six to 12 months.”

On July 20, 2009 Moody’s downgraded all notes issued by Geldilux-TS-2005 except the Aaa notes: “As a result of its revised methodology, Moody’s has reviewed its assumptions for the collateral portfolio anticipating a performance deterioration of SME loan portfolios in the current down cycle.”

Moody’s reviewed the default probability of the pool of corporate and SME debtors for Geldilux 2005 to be equivalent to a Ba1/Ba2 rating with a remaining weighted average life of two months. These revised assumptions have translated into a cumulative mean default assumption of 0.2% over 60 days and a coefficient of variation (defined as the ratio between the standard deviation and the mean) of 190%. Moody’s original mean default assumption was 0.1% over 90 days which corresponded to a Baa3 rating, and the coefficient of variation was 75%. The average recovery rate assumption remained unchanged at 25% on average.

Amendments to the portfolio replenishment criteria on industry and obligor concentrations implemented on 16 July 2009 was taken into account:

- maximum real estate industry concentration of 35.0% (40.0% before the amendment);
- maximum single obligor concentration of 0.5% (0.6% before the amendment);
- maximum remaining portfolio weighted average life of 60 days (90 days before the amendment).

Furthermore, the definition of the real estate industry was amended to comprise a wider range of businesses and to be compliant with the CDOROM™ (v2.5). Moody’s used a default distribution derived from CDOROM™ (v2.5), whereas initially, a lognormal default distribution was applied.

Moody’s concludes: “In summary, we concluded that the negative effects of the revised default assumption and the use of the CDOROM™ (v2.5) model were only partly offset by the amendments in the transaction structure and lead to rating confirmations on the Aaa-rated notes and downgrades on all other notes.”

6.2.5 Summary

The Geldilux transaction is a true sale securitisation of short-term loans originated by Bayerische Hypo- and Vereinsbank (HVB) and extended by HVB Banque Luxembourg S.A. (HVL). The issuer, Geldilux TS 2005 S.A., issued three series of floating rate tranched notes with different maturity profiles plus fixed rate liquidity notes, backed by the loan portfolio on the 17 June 2005 (Deal Closing Date). The Geldilux-TS-2005 transaction paid down all Series 1 and Series 2 notes, except Class F notes, according to the respectively scheduled maturity dates.

The loan portfolio comprises loans denominated in euro and Swiss Francs offered by HVB’s branch offices under the Euro-Loan Programme to large and medium-sized companies and small

businesses, including self-employed professionals (such as physicians or dentists) and natural persons. The loans are obtained for a variety of short-term purposes, including working capital, liquidity, import financing, or interim financing for real estate loans. The terms of the loans range from a few days to one, two, three, six or twelve months, which implies fast pool replenishment. All loans are fixed rate loans and total interest and principal is payable as a bullet amount at loan maturity.

The risks in the transaction are currency and interest rate risks; counterparty risks; and liquidity risk. The currency risk was present to due to the fact that a part of the loan receivables in the pool was issued in Swiss Franc. This is not longer valid, since no Swiss Franc loans are left in the pool. As amounts of interest payable on the loans are at fixed rates while the interest payable on the notes are at floating rate, there exists interest rate risk. This risk is mitigated by means of an interest rate swap. Timing mismatches between the loan maturities and interest payment dates at which the note interest is payable can result in interest shortfalls, that is, liquidity risk.

The counterparty risks originate from the origination and servicing of the loan portfolio and from the swap agreement. The originator (HVB) remains as the servicer of the asset pool and the transaction servicer (HVL) is also the swap counterparty. If the appointment of the servicer (HVB) or the transaction servicer (HVL) is terminated, the issuer shall appoint a substitute servicer or transaction servicer. This will likely result in delays in collection and servicing of the loan portfolio during the servicing transition having adverse effect on the noteholders. There is also a risk that an equivalent level of performance on collections and the administration of the loans cannot be maintained by any replacement of the servicer or the transaction servicer.

Anaylsing the above mentioned risks we can identify that the counterparty risk, especially in connection with the servicer and transaction servicer, is of great importance for the performance of the deal. We would like to point out that the performance of the originator/servicer is of vital importance in this transaction, since the pool is replenished with a high rate. If the originator does not supply the pool with new loans, the structure will be forced to redeem the notes.

All notes issued by Geldilux-TS-2005 except the Aaa notes were downgraded by Moody’s on July 20, 2009, with the motivation that as a result of a review of the assumptions on the collateral pool, Moody’s anticipates a performance deterioration of SME loan portfolios in the current down cycle.
7 Summary

The research project “Quantitative analysis and analytical methods to price securitisation deals”, sponsored by the European Investment Bank via the university research sponsorship programme EIBURS, aims at conducting advanced research related to rating, pricing and risk management of Asset-Backed Securities (ABSs).

The analysis of existing default and prepayment models and the development of new, more advanced default and prepayment models is one objective of the project. Another objective is to achieve a better understanding of the major rating agencies methodologies and models for rating asset-backed securities, and the underlying assumptions and the limitations in their methodologies and models. The modelling of a number of case studies will be an integral part of the project. The deliverables of the project are:

- Default and prepayment models: overview of standard models and new models;
- Rating agencies models and methods: summary of the agencies methodology to rate ABSs;
- Cash flow modelling: general comments on the most common features in ABS cash flows;
- Case studies: a number of existing ABS deals will be analysed and the default and prepayment models will be tested on these deals;
- Sensitivity analysis: parameter sensitivity and robustness of key characteristics of ABSs (average life, rating, expected loss, price/value).

Asset-Backed Securities (ABSs) are financial instrument backed by pools of assets. ABSs are created through a securitisation process, where assets are pooled together and the liabilities backed by these assets are tranched such that the ABSs have different seniority and risk-return profiles.

Due to the complex nature of securitisation deals there are many types of risks that have to be taken into account. The risks arise from the collateral pool, the structuring of the liabilities, the structural features of the deal and the counterparties in the deal. The main types of risks are credit risk, prepayment risk, market risks, reinvestment risk, liquidity risk, counterparty risk, operational risk and legal risk.

The quantitative analysis of an ABS is done through the modelling of the cashflows within the ABS deal. The modelling consists of two steps. The first step is to model the cash collections from the asset pool, which depends on the behaviour of the pooled assets. This can be done in two ways: with a top-down approach, modelling the aggregate pool behaviour; or with a bottom-up or loan-by-loan approach modelling each individual loan. It is in this step quantitative models and assumptions are needed. The second step is to model the distribution of the cash collections to the note holders, the issuer, the servicer and other transaction parties. This distribution of the cash collection, the so called priority of payments or waterfall, is described in detail in the Offering Circular or Deal Prospectus.

The cash collections from the asset pool consist of interest collections and principal collections (both scheduled repayments, unscheduled prepayments and recoveries). There are two parts of the modelling of the cash collections from the asset pool. Firstly, the modelling of performing assets, based on asset characteristics such as initial principal balance, amortisation scheme, interest rate and payment frequency and remaining term. Secondly, the modelling of the assets becoming delinquent, defaulted and prepaid, based on assumptions about the delinquency rates, default rates and prepayment rates together with recovery rates and recovery lags.
To be able to model cash collections from the asset pool it is needed to generate default and prepayment scenarios. We divide the default and prepayment models into two groups, deterministic and stochastic models. The deterministic models are simple models with no built in randomness, i.e., as soon as the model parameters are set the evolution of the defaults and prepayments are know for all future times. The stochastic models are more advanced, based on stochastic processes and probability theory. By modelling the evolution of defaults with stochastic processes we can achieve three objectives: stochastic timing of defaults; stochastic monthly default rates; and correlation (between defaults, between prepayments and between defaults and prepayments).

The quantitative models and approaches used today are either deterministic, in the sense that the distribution of defaults or prepayments are certain as soon as the parameters of the models are fixed and the cumulative default rate and prepayment rate, respectively, are chosen, or they are stochastic and based on the Normal distribution. In the report a collection of default and prepayment models are presented, ranging from very simple deterministic models to advanced stochastic models. We have proposed a set of new stochastic models that are based on more flexible distributions than the Normal, which take into account more extreme events.

The models influence on the ratings of structured finance transactions were studied on a transaction with two classes of notes. The findings can be summarised by saying that model risk is omnipresent. The model risk was assessed by comparing three different default models with a benchmark model, the Normal one-factor model. What could be observed for a low cumulative default rate assumption (10%) was that there was no or just one notch difference in rating for the senior notes and one to three notches difference for the junior notes, between the models output. However, increasing the cumulative default rate to a high number (40%) the rating differed with as much as three notches for the senior notes and four notches for the junior notes. Thus, for high cumulative default rates the model risk becomes more significant.

The ratings sensitivity to the cumulative default rate assumption was also studied by analysing the number of notches the ratings changed for a given default model when the default rate increased. As could be expected, the ratings are very dependent on the cumulative default rate assumption. For the junior notes the rating differed with as much as seven to eight notches, when the cumulative default rate changes from 10% to 40%. For the senior notes the changes were one to four notches.

Two of the major rating agencies, Moody’s and Standard & Poor’s (S&P’s), methodologies for rating securitisation transactions has also been studied. The focus in the study has been on their methodologies for rating SME (Small and Medium-sized Enterprises) securitisation transactions. The two rating agencies have two different meanings of their ratings. Moody’s rating is an assessment of the expected loss that a class of notes may experience during a certain time period, while S&P’s rating is an assessment of the probability of default of the class of notes and addresses the likelihood of full and timely payment of interest and the ultimate payment of principal.

Both Moody’s and S&P’s discriminate between granular and non-granular SME portfolios and applies different approaches to the two categories.

For non-granular SME portfolios both rating agencies use a loan-by-loan or bottom-up approach and model each individual asset in the pool. Moody’s uses its CDOROM® tool, which uses Normal factor models (with dependence structure based on the Gaussian copula approach); S&P’s is using its CDO Evaluator® model, which is based on the Gaussian copula approach. In both cases, thus, are the underlying mathematical tool to introduce dependence in the portfolios the Gaussian copula approach. Monte Carlo simulations are used to generate defaults in the
asset pool and to derive a default distribution. The difference between the two methodologies lies in the use of the tool or model.

In Moody’s methodology, the default scenario generated by each Monte Carlo simulation is fed into the cash flow model and the losses on the ABSs are derived. This is done for a large number of simulations and an estimate of the expected loss on each ABS is derived. The cash flow analysis is thus an integrated part of the simulations. The expected losses are mapped to a rating for each ABS using Moody’s loss rate tables.

In S&P’s methodology, the Monte Carlo simulations generate a probability distribution of potential portfolio default rates that is used to derive a set of scenario default rates (SDRs), one for each rating level. Each SDR represents the maximum portfolio default rate that an ABS with the desired rating should be able to withstand without default. These SDRs are then used to create different stressed rating scenarios that are applied in a cash flow analysis, which assesses if the ABS under consideration can withstand the stresses associated with the targeted rating level and therefore can receive the corresponding rating level.

For granular SME portfolios, Moody’s uses its ABSROM™ tool, which uses a default rate distribution to generate default scenarios and the corresponding likelihood of each scenario. The default rate distribution’s mean and standard deviation is estimated using historical data provided by the originator. Running a cash flow model with the different default scenarios, stressing the default timing, the expected loss on the notes are calculated. S&P’s applies its actuarial approach for granular SME portfolios, which is based on deriving base case default and recovery rates from historical data in order to stress defaults over the life of the transaction in different rating scenarios in a cash flow analysis.

Two analyse the different risks present in a real securitisation transaction we studied the Geldilux-TS-2005 transaction. The Geldilux transaction is a true sale securitisation of short-term loans originated by Bayerische Hypo- und Vereinsbank (HVB) and extended by HVB Banque Luxembourg S.A. (HVL). The issuer, Geldilux TS 2005 S.A., issued three series of floating rate tranchéd notes with different maturity profiles plus fixed rate liquidity notes, backed by the loan portfolio on the 17 June 2005 (Deal Closing Date). The Geldilux-TS-2005 transaction paid down all Series 1 and Series 2 notes, except Class F notes, according to the respectively scheduled maturity dates.

The loan portfolio comprises loans denominated in euro and Swiss Francs offered by HVB’s branch offices under the Euro-Loan Programme to large and medium-sized companies and small businesses, including self-employed professionals (such as physicians or dentists) and natural persons. The loans are obtained for a variety of short-term purposes, including working capital, liquidity, import financing, or interim financing for real estate loans. The terms of the loans range from a few days to one, two, three, six or twelve months, which implies fast pool replenishment. All loans are fixed rate loans and total interest and principal is payable as a bullet amount at loan maturity.

The risks in the transaction are currency and interest rate risks; counterparty risks; and liquidity risk. The currency risk was present to due to the fact that a part of the loan receivables in the pool was issued in Swiss Franc. This is not longer valid, since no Swiss Franc loans are left in the pool. As amounts of interest payable on the loans are at fixed rates while the interest payable on the notes are at floating rate, there exists interest rate risk. This risk is mitigated by means of an interest rate swap. Timing mismatches between the loan maturities and interest payment dates at which the note interest is payable can result in interest shortfalls, that is, liquidity risk.

The counterparty risks originate from the origination and servicing of the loan portfolio and
from the swap agreement. The originator (HVB) remains as the servicer of the asset pool and the transaction servicer (HVL) is also the swap counterparty. If the appointment of the servicer (HVB) or the transaction servicer (HVL) is terminated, the issuer shall appoint a substitute servicer or transaction servicer. This will likely result in delays in collection and servicing of the loan portfolio during the servicing transition having adverse effect on the noteholders. There is also a risk that an equivalent level of performance on collections and the administration of the loans cannot be maintained by any replacement of the servicer or the transaction servicer.

Analysing the above mentioned risks we can identify that the counterparty risk, especially in connection with the servicer and transaction servicer, is of great importance for the performance of the deal. We would like to point out that the performance of the originator/servicer is of vital importance in this transaction, since the pool is replenished with a high rate. If the originator does not supply the pool with new loans, the structure will be forced to redeem the notes.

All notes issued by Geldilux-TS-2005 except the Aaa notes were downgraded by Moody’s on July 20, 2009, with the motivation that as a result of a review of the assumptions on the collateral pool, Moody’s anticipates a performance deterioration of SME loan portfolios in the current down cycle.
References

59

Standard and Poor’s (2009c), *Methodology and Assumptions: Update And Clarification To Counterparty Criteria For Interest Rate Swap Counterparties In ’AAA’ Rated Transactions*, 1 April 2009.

Standard and Poor’s (2009d), *Standard and Poor’s Credit Rating Definitions*, 4 August 2009.

Appendix A: The Normal Inverse distribution

The Normal Inverse distribution is derived as an approximation of the default distribution when the Normal one-factor model is used for a large homogeneous portfolio. For a homogeneous portfolio the Normal one-factor model is given by

\[Z_n = \sqrt{\rho} X + \sqrt{1 - \rho} X_n, \quad n = 1, 2, \ldots, N, \]

where \(X \) is the systemic factor and \(X_n, n = 1, 2, \ldots, N \), are the idiosyncratic factors, all Normal distributed with mean 0 and standard deviation 1. Because the portfolio is homogeneous, all assets have the same relative size, the same correlation factor \(\rho \) and the same default barrier \(K^d(t), 0 < t \leq T \). The cumulative portfolio default rate at \(T \), for a given value of the systemic factor \(X = x \), is:

\[PDR(T; X = x) = \sum_{n=1}^{N} \frac{1}{N} D_n(T; X = x), \]

where \(D_n(T; X = x) \) is the default indicator of asset \(n \) given the systemic factor, that is, \(D_n(T; X = x) = 1 \) if asset \(n \) defaulted before \(T \) and zero otherwise when \(X = x \). Because \(PDR(T; X = x) \) is the average of \(N \) uncorrelated random variables, by the (Weak) Law of Large Numbers, as \(N \) tends to infinity, the portfolio default rate will converge to its (conditional) expected value:

\[E[PDR(T; X) | X = x] = \frac{1}{N} \sum_{n=1}^{N} p(x) = \frac{1}{N} Np(x) = p(x), \]

where \(p(x) \) is the default probability for an individual asset given \(X = x \):

\[p(x) = P[Z_n \leq K^d(T) | X = x] \]

As a consequence, the cumulative distribution of \(PDR(T; X) \) will be:

\[F_{PDR}(y) = P[PDR(T; X) < y] = P[p(X) < y] = P\left[\Phi\left(\frac{K^d(T) - \sqrt{1 - \rho} X}{\sqrt{\rho}}\right) < y\right] = P\left[X > \frac{K^d(T) - \sqrt{1 - \rho} \Phi^{-1}(y)}{\sqrt{\rho}}\right]. \]

Using the symmetry of the Normal distribution, we get the Normal Inverse distribution:

\[F_{PDR}(y) = P[PDR < y] = \Phi\left(\frac{\sqrt{1 - \rho} \Phi^{-1}(y) - K^d(T)}{\sqrt{\rho}}\right), \quad 0\% \leq y \leq 100\%, \]

where \(K^d(T) = \Phi^{-1}(p(T)) \).

The above convergence is in probability, which implies convergence in distribution.