Report 99-046

The Residues modulo m
of Products of Random Integers
Yuli Baryshnikov, Wolfgang Stadje
ISSN 1389-2355
The Residues modulo m of Products of Random Integers

Yuliy Baryshnikov and Wolfgang Stadje
University of Osnabrück

Abstract

For two (possibly stochastically dependent) random variables X and Y taking values in $\{0, \ldots, m-1\}$ we study the distribution of the random residue $U = XY \mod m$. In the case of independent and uniformly distributed X and Y we provide an exact solution in terms of generating functions that are computed via p-adic analysis. We show also that in the uniform case it is stochastically smaller than (and very close to) the uniform distribution. For general dependent X and Y we prove an inequality for the distance $\sup_{x \in [0,1]} |F_U(x) - x|$.

1 Introduction

Let X and Y be two (possibly dependent) random variables taking values in $\{0,1,\ldots,m-1\}$, where $m \geq 2$ is some fixed integer. In this note we study the distribution of the random residue of the product

$$U = XY \mod m.$$

We consider first the case when X and Y are independent and uniformly distributed, i.e. $P(X = i, Y = j) = m^{-2}$ for $i,j \in \{0, \ldots, m-1\}$. In Section 2 it is shown that the problem for general m can be reduced to that for $m = p^n$, where p is some prime number and $n \in \mathbb{N}$, and that in this case it is sufficient to determine the cardinalities

$$N_p(l, n) = \# \{(x, y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z}) \mid xy = p^{n-l}\}.$$
We prove that for every prime number p the generating function $H_p(T, Z) = \sum_{n,d} N_p(l, n)T^n Z^l$ of the double sequence $N_p(l, n)$ is given by

$$H_p(T, Z) = \frac{(1 - pT)^2(1 - p^{-1}Z) - p^2(1 - p^{-1}T)T(1 - Z)}{(1 - Z)(1 - p^{-1}Z)(1 - pT)^2(1 - p^2T)}. \quad (1.1)$$

In the case $p = 2$ we derive a neat explicit formula for the distribution function of U. It is given by

$$P(U \leq k) = (k + 1)2^{-n} + 2^{-n+1} \sum_{i=0}^{n-1} (1 - \delta_i) \quad (1.2)$$

for $k = 0, \ldots, 2^{n-1}$, where $\delta_0, \ldots, \delta_{n-1} \in \{0, 1\}$ are the binary digits of k, defined by $k = \delta_0 + 2\delta_1 + 4\delta_2 + \cdots + 2^{n-1}\delta_{n-1}$.

It follows from (1.2) that the random 'fractional residue' $2^{-n}U$ is stochastically smaller than a uniform random variable on $[0, 1)$, i.e. $P(2^{-n}U < u) \geq u$ for all $u \in [0, 1]$ and that the maximal deviation is given by

$$\sup_{0 < u \leq 1} (P(2^{-n}U < u) - u) = (n + 2)2^{-(n+1)}, \quad (1.3)$$

so that the distribution of $2^{-n}U$ tends to the uniform distribution on $[0, 1]$ at an exponential rate (given by (1.3)), as $n \to \infty$. In fact, these stochastic dominance and convergence remain valid for arbitrary m.

The rest of the paper is devoted to an extension of this asymptotic equidistribution result to general m and dependent, non-uniform random variables X and Y.

We will show that

$$\sup_{0 \leq u \leq 1} |P(U/m < u) - u| \leq C \left(\frac{\log m}{m} \right)^{1/2} \quad (1.4)$$

if the distribution of Y and the conditional distribution of X given Y do not deviate too much from uniformity and if the latter distribution satisfies a certain Lipschitz condition. Specifically, we assume that

$$P(Y = k) \leq C_0/m$$

$$p(j|k) = P(X = j \mid Y = k) \leq C_1/m$$

$$\left| \frac{p(j_1|k)}{p(j_2|k)} - 1 \right| \leq C_2 |j_1 - j_2|/m$$

2
for some constants C_0, C_1, C_2. Then (1.4) holds for a certain constant C which depends only on C_0, C_1 and C_2. From (1.4) we can conclude that U/m is for a large class of joint distributions of X and Y 'almost' uniformly distributed on $[0,1]$ in the sense of weak convergence.

Deterministic sequences of integers whose residues are uniformly distributed are treated in Narkiewicz [10] and Kuipers and Niederreiter [8]. They play an important role in random number generation (Ripley [12]). In the realm of stochastic sequences already Dvoretzky and Wolfowitz [5] studied weak convergence of residues for sums of independent, \mathbb{Z}_+-valued random variables; more recent papers on related questions are Brown [3], Barbour and Grubel [1], and Grubel [6]. The distribution of the fractional part of continuous random variables, in particular its closeness or convergence to the uniform distribution on $[0,1)$, has been studied by many authors (e.g. Schatte [13], Stadje [14, 15], Qi and Wilms [11]).

2 The uniform case

We start by deriving the exact probability distribution of U in the case $m = 2^n$, $n \in \mathbb{N}$. For $x \in \mathbb{R}_+$ let $\text{frac}(x)$ be the fractional part of x.

Proposition 1 We have

$$P(U \leq k) = (k + 1)2^{-n} + 2^{-(n+1)} \sum_{i=0}^{n-1} (1 - \delta_i),$$

(2.1)

for every $k \in \{0, 1, \ldots, 2^n - 1\}$, where $\delta_0, \ldots, \delta_{n-1} \in \{0, \ldots, n - 1\}$ are the binary digits of k, i.e. $k = \delta_0 + 2\delta_1 + 4\delta_2 + \cdots + 2^{n-1}\delta_{n-1}$.

Proof. Obviously,

$$P(U = k) = \sum_{i=0}^{2^n-1} 2^{-2n} \text{card}\{j \in I_n \mid \text{frac}(ij2^{-n}) = k2^{-n}\}. \quad (2.2)$$

Let

$$A_m = \begin{cases} \{i \in I_n \mid i2^{-m} \text{ is odd}\}, & \text{if } m < n \\ \{0\}, & \text{if } m = n. \end{cases}$$

It is easily seen that

$$\text{card } A_m = \begin{cases} 2^{n-m-1}, & \text{if } m \in \{0, \ldots, n - 1\} \\ 1, & \text{if } m = n. \end{cases}$$

3
Consider $i \in A_m$ and $k \in A_l$ for some $m, l \in \{0, \ldots, n-1\}$, say $i = (2p+1)2^m$ and $k = (2q+1)2^l$. Then for any $j \in I_n$,

$$\frac{ij2^{-n}}{2^n} = k2^{-n}$$

is equivalent to

$$(2p+1)j - (2q+1)2^{l-m} = N2^{n-m}$$

for some integer N. \hspace{1cm} (2.3)

For $l < m$ the lefthand side of (2.4) is not integer, so there is no solution j of (2.3). Now let $l \geq m$. Since $2p+1$ and 2^n are relatively prime, a simple result on residues implies that the numbers $(2p+1)j - (2q+1)2^{l-m}$ run through a complete set of residues mod 2^n if j runs through (the complete set of residues) $0, 1, \ldots, 2^n - 1$. But $N2^{n-m}$ gives different residues mod 2^n for $N = 0, \ldots, 2^m - 1$, while for larger values of N one only gets replications of these residues. Thus, the number of solutions j of (2.3) is 2^n if $l \geq m$. The same result also holds for $m \in A_s$, i.e. $m = 0$.

From (2.2) it now follows that if $k \in A_l$ for some $l < n$ we obtain

$$P(U = k2^{-n}) = \sum_{m=0}^{n-1} 2^{-2n} \sum_{i \in A_m} \text{card}\{j \in I_n \mid \text{int}(ij2^{-n}) = k2^{-n}\} + 2^{-n}\delta_{0k}$$

$$= \sum_{m=0}^{l} 2^{-2n} \text{card}(A_m)2^n$$

$$= \sum_{m=0}^{l} 2^{-n}2^{n-m-1}$$

$$= (l+1)2^{-(n+1)},$$

\hspace{1cm} (2.5)

while if $k \in A_n$,

$$P(U = 0) = \sum_{m=0}^{n-1} 2^{-2n} \text{card}(A_m)2^n + 2^{-n}$$

$$= (n+2)2^{-(n+1)}.$$ \hspace{1cm} (2.6)

In particular, $k \mapsto P(U = k)$ is constant on A_l for every l. Therefore, the probability $P(U \in (2^m\alpha, 2^m\alpha+2^{m-1}))$ is the same for every $\alpha \in \{0, \ldots, 2^{n-m}-
1}. It follows that

\[
P(U \leq k) = P(U = 0) + P(0 < U < \delta_{n-1}2^n) + \sum_{l=1}^{n-1} P \left(\sum_{i=l}^{n-1} \delta_i 2^i < U \leq \sum_{i=l-1}^{n-1} \delta_i 2^i \right)
\]

\[
= P(U = 0) + \sum_{l=0}^{n-1} P(0 < U \leq \delta_l 2^l).
\]

To compute the righthand side of (2.7), note that the number of integers \(i \in A_m \) satisfying \(0 < i \leq 2^l \) is equal to \(2^l - m - 1 \) for \(m = 0, \ldots, l - 1 \) and equal to 1 for \(m = l \). Hence, by (2.5),

\[
P(0 < U \leq 2^l) = \sum_{m=0}^{l-1} P(U \in A_m \cap \{0, \ldots, 2^l\})
\]

\[
= \sum_{m=0}^{l-1} (l + 1)2^{-(n+1)}2^{l-m-1} + (l + 1)2^{-(n+1)} = 2^{-(n+1)}(2^{l+1} - 1).
\]

Inserting (2.8) and (2.6) in (2.7) now yields (2.1).

Proposition 2

1) For arbitrary \(m \) \(U \) is stochastically smaller than a uniform random variable on \([0, 1]\);

2) For arbitrary \(m \)

\[
\sup_{0 < u \leq 1} (P(U < u) - u) = O(m^{-1+\epsilon}),
\]

for any \(\epsilon > 0 \);

and

3) For \(m = 2^n \),

\[
\sup_{0 < u \leq 1} (P(U < u) - u) = (n + 2)2^{-(n+1)}.
\]

Proof. We start with 1). It is clear that

\[
\#\{0 \leq j < m : ij \mod m \leq k\} = \gcd(i, m) \left(\left\lfloor \frac{k}{\gcd(i, m)} \right\rfloor + 1 \right).
\]

5
This implies

\[P(U \leq k) = \frac{1}{m^2} \sum_{i=0}^{m-1} \gcd(i, m) \left(\left\lfloor \frac{k}{\gcd(i, m)} \right\rfloor + 1 \right) > \frac{k}{m} \]

(2.12)

for all \(0 \leq k < m \), and hence proves 1).

Further, estimating (2.12) in an obvious way from above, we obtain

\[P(U \leq k) \leq \frac{1}{m^2} \sum_{i=0}^{m-1} \gcd(i, m) \left(\frac{k}{\gcd(i, m)} + 1 \right) \]

\[\leq \frac{k}{m} + \frac{k}{m^2} \sum_{i=0}^{m-1} \gcd(i, m) \]

\[= \frac{k}{m} + \frac{k}{m^2} \sum_{i|m} \# \{0 \leq i < m : \gcd(i, m) = 1\} \]

\[\leq \frac{k}{m} + \frac{d(m)}{m}, \]

(2.13)

where \(d(m) \) denotes the number of divisors of \(m \). It is known that \(d(m) = O(m^\epsilon) \) for all \(\epsilon > 0 \), which implies 2).

To prove 3) define for \(0 < u \leq 1 \) the integer \(k(u) \) by \(k(u)2^{-n} < u \leq (k(u) + 1)2^{-n} \) and let \(\delta_0, \ldots, \delta_{n-1} \) be its binary digits. By (2.1) we can write

\[P(U < u) - u = (k(u)2^{-n} + 2^{-n} - u) + 2^{-(n+1)} \sum_{i=0}^{n-1} (1 - \delta_i), \]

(2.14)

which is nonnegative by the definition of \(k(u) \). Further it is clear from (2.14) that \(\sup_{0 < u \leq 1}(P(U < u) - u) \) is approached as \(u \downarrow 0 \), yielding (2.10).

Now we derive the exact formulae for \(P(U = k) \) in the case of general \(m \in \mathbb{N} \).

Let \(X \) and \(Y \) be independent and uniform on the set \(\{0, \ldots, m - 1\} \), which we identify with \(\mathbb{Z}/m\mathbb{Z} \). Then \(P(U = a) \) is equal to \(m^{-2} \) times the number of solutions \((x, y) \in (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z}) \) of the equation

\[xy \equiv a \mod m. \]

Let \(m = \prod p_i^{n_i} \) be the prime factorization of \(m \) (\(p_i \) primes, \(n_i \in \mathbb{N} \)). For \(a \in \mathbb{Z}/m\mathbb{Z} \) we define \(a(i) \in \mathbb{Z}/p_i^{n_i}\mathbb{Z} \) as the (unique) solution of

\[a(i) \equiv a \mod p_i^{n_i}. \]

Then as \(\mathbb{Z}/m\mathbb{Z} = \prod (\mathbb{Z}/p_i^{n_i}\mathbb{Z}) \) (the Chinese remainder theorem), we have the following decomposition.
Lemma 1 The number of pairs \((x, y) \in (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})\) satisfying
\[xy \equiv a \mod m \] (2.15)
is equal to the product of the numbers of solutions \((x, y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z})\) of
\[xy \equiv a(i) \mod p^n. \] (2.16)

By the Lemma, we only have to determine the number of solutions of (2.15) for \(m\) of the form \(m = p^n\).

Fix a prime number \(p\) and a natural number \(n\). Observe first that the number of solutions \((x, y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z})\) of \(xy \equiv a \mod p^n\) depends on \(a\) only through the \(p\)-adic norm of \(a\), that is, through the exponent of the maximal power of \(p\) that divides \(a\). Indeed, if there exists an invertible \(b\) in \(\mathbb{Z}/p^n\mathbb{Z}\) satisfying
\[\{(x, y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z}) \mid xy \equiv a \mod p^n\}\]
then
\[\#\{(x, y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z}) \mid xy \equiv a \mod p^n\} = \#\{(x, y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z}) \mid xyb \equiv p^{n-1} \mod p^n\} = \#\{(x, z) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z}) \mid xz \equiv p^{n-1} \mod p^n\} = N_p(l, n). \]

To compute \(N_p(l, n)\), we use the following well-known formula from the theory of \(p\)-adic integration (Christol [4, Sect. 7.2.2, p. 466]). Let \(f(x_1, \ldots, x_r)\) be a polynomial with coefficients in \(\mathbb{Z}_p\), the ring of \(p\)-adic integers, and let \(| \cdot |_p\) denote the \(p\)-adic norm. Then for any real \(s > 0\),
\[\int_{(\mathbb{Z}_p)^r} |f(x_1, \ldots, x_r)|_p^s \mu(dx_1) \cdots \mu(dx_r) = p^s - (p^s - 1)Q(p^{-r-s}), \] (2.17)
where \(\mu\) is the Haar measure on \(\mathbb{Z}_p\) and \(Q(T)\) is a Poincaré series:
\[Q(T) = \sum_{k=0}^{\infty} T^k \#\{(x_1, \ldots, x_r) \in (\mathbb{Z}/p^k\mathbb{Z})^r \mid f(x_1, \ldots, x_r) \equiv 0 \mod p^k\}. \]

Theorem 1 The generating functions
\[G_p(T) = \sum_{n=0}^{\infty} N_p(l, n)T^n, \quad H_p(T, Z) = \sum_{n=0}^{\infty} \sum_{l=0}^{n} N_p(l, n)T^nZ^l \]
are given by

\[G_{p,s}(T) = \frac{p^l(1 - p^s)^2 - p^2(1 - p^{-1})^2T}{p^l(1 - p^s)^2(1 - p^2T)} \] (2.18)

\[H_p(T, Z) = \frac{(1 - pT)^2(1 - p^{-1}Z) - p^2(1 - p^{-1}T)(1 - Z)T}{(1 - Z)(1 - p^{-1}Z)(1 - p^2T)(1 - p^2T)} \] (2.19)

Proof. We use formula (2.17) for \(r = 2 \) and \(f(x, y) = f_I(x, y) = p^fxy \). For the lefthand side of (2.17) we obtain

\[
\int_{(Z_p)^2} |f_I(x, y)|_p \mu(dx) \mu(dy) = \int_{(Z_p)^2} p^{-1} |x|^s_p |y|_p \mu(dx) \mu(dy)
\]

\[= p^{-1} \left(\int |x|^s_p \mu(dx) \right)^2. \]

By (2.17),

\[\int |x|^s_p \mu(dx) = p^s - (p^s - 1) \frac{1}{1 - p^{-1-s}} = \frac{1 - p^{-1}}{1 - p^{-1-s}}. \]

(Note that here \(Q(T) = 1/(1 - T) \), since \#\{ \(x \in \mathbb{Z}p^n / \mathbb{Z} \mid x \equiv 0 \mod p^n \} = 1 \) for all \(n \)). Furthermore,

\[xy \equiv p^{-1} \mod p^n \quad \text{iff} \quad p^fxy \equiv 0 \mod p^n. \]

Thus, the coefficients on the righthand side of (2.17) are just the \(N_p(l, n) \). It follows that

\[p^s - (p^s - 1) \sum_n N_p(l, n)(p^{-2-s})^n = p^{-1} \left(\frac{1 - p^{-1}}{1 - p^{-1-s}} \right)^2. \]

Setting \(T = p^{-2-s} \), so that \(p^{-s} = p^2T \) we get

\[\frac{1}{p^2T} - \left(\frac{1}{p^2T} - 1 \right) G_{p,s}(T) = p^{-1} \left(\frac{1 - p^{-1}}{1 - pT} \right)^2 \] (2.20)

and (2.18) follows from (2.20) by a short calculation. Similarly, multiplying (2.20) by \(Z^l \) and summing over \(l \) yields (2.19).
For example, if \(p = 2 \) the numbers \(N_p(0, n) \) of solutions \((x, y)\) of \((x, y) \equiv 0 \mod 2^n\) is \((n + 2)2^{n-1}\), as

\[
G_{2,0}(T) = \sum_{n=0}^{\infty} N_p(0, n)T^n = \frac{(1 - 2T)^2 - T}{(1 - 2T)^2(1 - 4T)} = \frac{1 - T}{(1 - 2T)^2} = \sum_{n=0}^{\infty} (n + 2)2^{n-1}T^n.
\]

3 The inequality for dependent random variables

We will now prove (1.4). For this we need some basic theory of continued fractions (see e.g. Hardy and Wright [7], Billingsley [2]) and a probability estimate due to Lévy [9]).

Any \(x \in [0,1] \) has a continued fraction expansion \(x = [a_1(x), a_2(x), \ldots] \) providing a sequence of fractions usually denoted by

\[
p_n(x)/q_n(x) = [a_1(x), \ldots, a_n(x)].
\]

For two positive numbers \(\rho_0 < \rho_1 \) let

\[
B(\rho_0, \rho_1) = \{x \in [0,1] \mid \rho_0 < q_k(x) < \rho_1 \text{ for some } k \in \mathbb{N}\}.
\]

Lemma 2 \(\lambda(B(\rho_0, \rho_1)) \geq 1 - \frac{2\rho_0}{\rho_1 - \rho_0}(1 + 2 \log_2 \rho_0) - \rho_1^{-1} \).

Proof. Let \(Q \) be the set of all finite sequences \(\vec{q} = (q_1, \ldots, q_k) \), \(k \in \mathbb{N} \), of denominators of possible continued fraction expansions satisfying \(q_k \leq \rho_0 \). We set \(x(\vec{q}) = p_k/q_k \), where \(p_k \) is the \(k \)th numerator corresponding to \(q_1, \ldots, q_k \), and

\[
I(\vec{q}) = \{x \in [0,1] \mid (q_1(x), \ldots, q_k(x)) = \vec{q}\}
\]

\[
J(\vec{q}) = I(\vec{q}) \cap \{x \in [0,1] \mid q_{k+1}(x) \geq \rho_1 \text{ or } x = x(\vec{q})\}
\]

\[
J(0) = \{x \in [0,1] \mid q_1(x) \geq \rho_1\}.
\]

The sets \(J(\vec{q}), \vec{q} \in Q \), and \(J(0) \) are pairwise disjoint intervals and

\[
B(\rho_0, \rho_1) = [0,1] \setminus \left(J(0) \cup \bigcup_{\vec{q} \in Q} J(\vec{q}) \right).
\]
Thus,

\[\lambda([0,1] \setminus B(\rho_0, \rho_1)) = \lambda(J(0)) + \sum_{q \in Q} \lambda(J(q)) \]

\[= \lambda(J(0)) + \sum_{k=1}^{k_0} \sum_{q \in Q, |q| = k} \lambda(J(q)), \quad (3.1) \]

where $|q|$ denotes the length of the sequence q and k_0 is the maximum length of sequences in Q. Since

\[\rho_0 > q_k \geq 2^{(k-1)/2} \text{ for every } (q_1, \ldots, q_k) \in Q, \]

it follows that

\[k_0 < 1 + 2 \log_2 \rho_0. \quad (3.2) \]

Now let U be a random variable that is uniformly distributed on $[0,1]$. Then if $q \in Q, |q| = k$, it follows that

\[\lambda(J(q)) = P(q_{k+1} \geq \rho_1, U \in I(q)) \]

\[= P(U \in I(q))P(q_{k+1} \geq \rho_1 | U \in I(q)) \]

\[\leq P(U \in I(q))P(\rho_1 - \rho_0 > \rho_0 | U \in I(q)) \quad (3.3) \]

\[\leq P(U \in I(q))2 \left(\frac{\rho_1 - \rho_0}{\rho_0} \right)^{-1}. \]

For the first inequality in (3.3) we have used the recursion $q_{k+1} = q_k \alpha_{k+1} + q_{k-1}$ which for $\tilde{q} \in Q, |\tilde{q}| = k$, implies that $\alpha_{k+1} \geq (\rho_1 - \rho_0)/\rho_0$. The second inequality follows from a result of Lévy [9, p. 296].

To estimate $\lambda(J(0))$, note that $q_1(x) \geq \rho_0$ implies that $x \leq p_1(x)/q_1(x) = 1/\rho_1$. Thus, by (3.1), (3.2) and (3.3).

\[\lambda([0,1] \setminus B(\rho_0, \rho_1)) \leq \rho_1^{-1} + k_0 \frac{2\rho_0}{\rho_1 - \rho_0} \sum_{q \in Q} P(U \in I(q)) \]

\[\leq \rho_1^{-1} + (1 + 2 \log_2 \rho_0) \frac{2\rho_0}{\rho_1 - \rho_0}. \]

The Lemma is proved.
Lemma 3 Let X be uniformly distributed on $\{0, 1, \ldots, m-1\}$. Then
\[P(X/m \notin B(\rho_0, \rho_1)) \leq 2\rho_0(1 + 2\log_2 \rho_0) \left(\frac{1}{\rho_1 - \rho_0} + \frac{\rho_0}{m} \right) + \rho_1^{-1} + m^{-1}. \] (3.4)

Proof. For every half-open or open interval I in $[0, 1]$ we have
\[|P(X/m \in I) - \lambda(I)| \leq m^{-1}. \] (3.5)
As $J(0)$ and $J(q)$ are half-open intervals, (3.1) and (3.4) yield
\[P(X/m \notin B(\rho_0, \rho_1)) \leq \lambda(J(0)) + \sum_{q \in Q} \lambda(J(q)) + m^{-1}(1 + \text{card } Q). \] (3.6)

It remains to find an upper bound for $\text{card } Q$. Let \tilde{Q} be the set of sequences in Q having maximal length, i.e., the set of those $(q_1(x), \ldots, q_k(x)) \in Q$ for which $q_{k+1}(x) \geq \rho_0$. Since
\[\lambda(I(q_1, \ldots, q_k)) = \frac{1}{q_k(q_k + q_{k-1})} > \frac{1}{2q_k^2} \geq \frac{1}{2\rho_0^2} \]
for $(q_1, \ldots, q_k) \in \tilde{Q}$, we clearly have $\text{card } \tilde{Q} < 2\rho_0^2$. Inequality (3.4) now follows from (3.6), Lemma 2 and
\[\text{card } Q \leq k_0 \text{card } \tilde{Q} < (1 + \log_2 \rho_0)(2\rho_0^2). \]

Lemma 4 Let
\[p(j,k) = P(X = j, Y = k), \ j, k \in \{0, \ldots, m-1\} \]
be the joint distribution of X and Y. Assume that there are constants C_1 and C_2 such that
\[p(j|k) = P(X = j|Y = k) \leq C_1/m \]
(3.7)
\[\frac{|p(j_1|k) - p(j_2|k)|}{p(j_2|k)} - 1 \leq C_2|j_1 - j_2|/m \]
(3.8)
for all $j, k, j_1, j_2 \in \{0, \ldots, m-1\}$. Then
\[|P(U/m < u|Y = k) - u| \leq \frac{3C_2}{m} + \inf_{n \geq 1} f \left(q_n \left(\frac{k}{m} \right) \right). \]
for all \(k \in \{0, \ldots, m-1\} \), where

\[
f(q) = \frac{3}{q} + \frac{(C_1 + C_2)q}{m}, \quad q \in \mathbb{N}.
\]

Proof. Let \(p/q \) be an arbitrary fraction from the continued fraction expansion of \(k/m \). Let

\[
J_i = \{(i-1)q, (i-1)q + 1, \ldots, iq-1\}
\]

\[
J_i(u) = \{j \in J_i \mid \text{frac}(jk/m) < u\},
\]

where \(\text{frac}(x) \) denotes the fractional part of \(x \geq 0 \). Then

\[
P(U/m < u \mid Y = k) = \sum_{i=1}^{[m/q]} \sum_{j \in J_i(u)} P(X = j \mid Y = k)
+ \sum_{k \in J_{[m/q]}/ m} \sum_{k < m} P(X = j \mid Y = k) \quad (3.9)
= I + II.
\]

Clearly, (3.7) yields

\[
II \leq C_1 q/m. \quad (3.10)
\]

Regarding the sum \(I \), we can write

\[
I = \sum_{i=1}^{[m/q]} \sum_{j \in J_i(u)} p(j|k)
\leq \sum_{i=1}^{[m/q]} \frac{A_i}{a_i} \text{card} J_i \sum_{j \in J_i} p(j|k), \quad (3.11)
\]

where \(A_i = \max_{j \in J_i} p(j|k) \) and \(a_i = \min_{j \in J_i} p(j|k) \). From (3.8) we can conclude that

\[
A_i/a_i \leq 1 + (C_2 q/m). \quad (3.12)
\]

Obviously, \(\text{card} J_i = q \). We need an upper bound for \(\text{card} J_i(u) \). Note that

\[
\left| \frac{k}{m} - \frac{p}{q} \right| < q^{-2}.
\]

12
For arbitrary $j \in J_i(u)$ write $j = (i - 1)q + h$, where $h \in J_1$; we obtain

$$\frac{jk}{m} = \frac{(i - 1)q}{m} + \frac{hk}{m}$$

$$= \frac{(i - 1)q}{m} + \frac{h}{m}$$

and

$$\frac{hk}{m} = \frac{h\left(\frac{k}{m} - \frac{p}{q}\right) + \frac{hp}{q}}{m} = \frac{h}{m}$$

where $|\alpha| < q^{-1}$. Recall that p and q are relatively prime. Thus, as h runs through J_1, $\frac{hk}{m}$ runs through the set of all values $\frac{\ell}{q} + \alpha$, $\ell \in J_1$. Let $\beta_i = (i - 1)qk/m$.

Let $\tilde{j}_i(u)$ be the number of values $\frac{\beta_i + (l/q)}{q}$ in $[0, u)$ for which $l \in J_1$. Clearly, we have $\tilde{j}_i(u) \in \{[qu], [qu] + 1\}$. Since $|\alpha| < q^{-1}$, it now follows easily that

$$|\tilde{j}_i(u) - \text{card } J_i(u)| \leq 2,$$

so that

$$|qu - \text{card } J_i(u)| \leq 3. \quad (3.13)$$

By (3.12) and (3.13),

$$\frac{A_i \text{ card } J_i(u)}{a_i \text{ card } J_i} \leq \left(1 + \frac{C_1q}{m}\right) \frac{qu + 3}{q} \leq u + \frac{C_1q}{m} + \frac{3}{q} + \frac{3C_2}{m}. \quad (3.14)$$

Inserting (3.14) and (3.10) in (3.9) we find that

$$P(U/m < u) \leq u + \frac{C_2q}{m} + \frac{3}{q} + \frac{3C_2}{m} + \frac{C_1q}{m}$$

$$= u + \frac{3C_2}{m} + f(q).$$

Minimizing with respect to all possible denominators $q = q^n(k/m)$ we arrive at

$$P(U/m < u) - u \leq \frac{3C_2}{m} + \inf_{n \geq 1} f \left(q^n \left(\frac{k}{m}\right)\right).$$

The analogous lower bound $P(U/m < u) \geq u - (3C_2/m) - f(q)$ is derived along the same lines.
Theorem 2 Assume that the joint distribution of X and Y satisfies conditions (3.7) and (3.8) and that

$$P(Y = k) \leq C_0/m, \ k = 0, \ldots, m - 1. \quad (3.15)$$

for some constant C_0. Then there is a constant C depending only on C_0, C_1, C_2 such that

$$\sup_{0 \leq u \leq 1} |P(U/m < u) - u| \leq C \left(\frac{\log m}{m} \right)^{1/2}. \quad (3.16)$$

Proof. By the formula of total probability and Lemma 4, we obtain

$$P(U/m < u) = \sum_{k=0}^{m-1} P(Y = k)P(U/m < u|Y = k) \leq u + 3C_2m^{-1} + \sum_{k=0}^{m-1} P(Y = k) \min_{n \geq 1} \left[1, \min_{n \geq 1} f \left(q_n \left(\frac{k}{m} \right) \right) \right]$$

$$= u + 3C_2m^{-1} + E \left(\min_{n \geq 1} \left[1, \min_{n \geq 1} f \left(q_n \left(\frac{Y}{m} \right) \right) \right] \right). \quad (3.17)$$

Note that the right side of (3.17) is equal to $\int_0^1 (1 - G(x))dx$, where

$$G(x) = P \left(\min_{n \geq 1} f \left(q_n \left(\frac{Y}{m} \right) \right) < x \right).$$

Let $C_3 = C_1 + C_2$. The function $f(t) = 3t^{-1} + C_3m^{-1}t$, $t > 0$, is strictly convex, has the unique minimum $t_0 = (3m/C_3)^{1/2}$ and $x_0 = f(t_0) = 2t_0^{-1}$. Thus the equation $f(t) = x$ has no solution for $x < x_0$ and exactly two solutions $t_1(x) < t_2(x)$ for $x > x_0$. If $x > x_0$, a short calculation yields

$$f(6/x) = f(mx/2C_3) = \frac{x}{2} + \frac{6C_3}{mx} < x,$$

and consequently $t_1(x) < 6/x < mx/2C_3 < t_2(x)$. These observations show that

$$G(x) = P(t_1(x) < q_n(Y/m) < t_2(x) \text{ for some } n \in \mathbb{N}) \geq P(6/x < q_n(Y/m) < mx/2C_3 \text{ for some } n \in \mathbb{N}) \quad (3.18)$$

$$= P(Y/m \in B(6/x, mx/2C_3)).$$

From (3.15) and Lemma 3 it now follows that

$$1 - G(x) \leq H(x) + m^{-1}, \ x \in (0, 1]$$

14
where the function H is defined by

$$H(x) = \frac{2C_3}{mx} + 2C_0 \left(\frac{(6/x)^2 m^{-1} + \frac{12C_3}{mx^2 - 12C_3}}{(1 + 2 \log_2(6/x))} \right), \ x > x_0.$$

Thus, for any $y \in (x_0, 1]$ we have the following estimate:

$$E(\min[1, f(q_n(Y/m))]) = \int_0^1 (1 - G(x)) \, dx \leq y + \int_y^1 H(x) \, dx. \quad (3.19)$$

On (x_0, ∞) the function $H(x)$ is positive and strictly decreasing from infinity at zero. Further,

$$H(x) \geq 2 \left(\frac{36}{mx^2} + \frac{12C_3}{mx^2} \right) \left(1 + 2 \log_2(6/x) \right) \geq 12 \cdot \frac{48}{mx^2}, \ x \in (x_0, 1] \quad (3.20)$$

as $C_0 \geq 1$ and $C_3 \geq 1$. Let x_1 be the solution of $H(x) = 1$ in (x_0, ∞). For sufficiently large m we have $x_1 < 1$ and then, by (3.20),

$$x_1 \geq \max[12(C_3/m)^{1/2}, (576/m)^{1/2}].$$

Hence if $x_1 \leq x \leq 1$, $H(x)$ can be bounded as follows:

$$H(x) \leq \frac{2C_3}{mx} + 2C_0 \left(\frac{36}{mx^2} + \frac{12C_3}{mx^2(1 - (12C_3/mx^2))} \right) (1 + \log_2(36/x_1^2))$$

$$\leq \frac{2C_3}{mx} + \frac{2C_0}{mx^2} \left(36 + \frac{144}{11} \frac{C_3}{1} \right) (1 + \log_2(36m/576))$$

$$\leq \frac{2C_3}{mx} + \frac{2C_0}{mx^2} (36 + 14C_3)(\log_2 m - 3).$$

For any $y \in [x_1, 1]$ we now find that

$$y + \int_y^1 H(x) \, dx \leq y + \frac{2C_3}{my} + \frac{2C_0(36 + 14C_3)(\log_2 m - 3)}{my}. \quad (3.21)$$

Over $y \in (0, \infty)$ the right-hand side of (3.21) is minimized for

$$y_0 = [2C_3 + 2C_0(36 + 14C_3)(\log_2 m - 3)]^{1/2} m^{-1/2},$$

the corresponding minimum being equal to $2y_0$. A short calculation shows that $H(y_0) \to (9 + 3C_3)/(9 + 4C_3) < 1$, as $m \to \infty$. Thus, $y_0 > x_1$ for sufficiently large m. Hence we may insert the value y_0 in (3.21) for all but finitely many m. To summarize, it is now proved that

$$P(U/m < u) \leq u + C \sqrt{\frac{\log m}{m}}.$$
for some constant C depending only on $C_0, C_1,$ and C_2. Similarly it can be shown that $P(U/m < u) \geq u - C((\log m)/m)^{1/2}$.

References