A Derivation of the Knuth-Morris-Pratt
Pattern Matching Program

by

Cai Chengdian

EUT Report 85-WSK-02
ISSN 0167-9708
Coden: TEUEDE
A DERIVATION OF THE KNUTH-MORRIS-PRATT
PATTERN MATCHING PROGRAM

by

Cai Chengdian

Department of Computer Science
Jinan University
Guangzhou, Guangdong
China

Department of Mathematics and Computing Science
Eindhoven University of Technology
5600 MB Eindhoven
The Netherlands

Abstract

The purpose of this note is to produce a formal derivation of the Knuth-Morris-Pratt pattern matching program.

AMS Classification: 68 B 10, 68 C 05, 68 E 99.
Introduction

Pattern matching is one of the fundamental operations on strings. Several algorithms that solve this problem have been developed. Among these, Knuth-Morris-Pratt's one ([1]) is well-known and has the advantage of time complexity linear in the length of the text and storage requirements linear in the length of the pattern. But it requires some complicated processing on the pattern that is difficult to understand and this has limited the extent to which the program is used ([2]). In [1] the program is introduced by a play-by-play description for an example, and the formal correctness of the program is not given in detail. In [3] a formal treatment for this program is given, but the processing on the pattern is not contained in detail in the text either, and is somewhat different from [1]. In this note we shall apply formal techniques that are given by [3] to produce a proof and a program for the pattern matching problem. The processing on the pattern is essentially the same as [1].

Notational interlude and a property

The expression

\[(\text{MIN } i: D(i): E(i))\]

denotes the minimum value of \(E(i)\) for all \(i\) satisfying \(D(i)\).

For \(r \leq s\), \(x(r,s)\) denotes the sequence \(x(r), x(r+1), \ldots, x(s-1)\) of \(s-r\) elements.

For two sequences \(x(s,s+k)\) and \(y(r,r+k)\),

\[x(s,s+k) = y(r,r+k)\]
denotes
\[(A \ i: \ 0 \leq i < k: \ x(s+i) = y(r+i))\]
and
\[x(s,s+k) \neq y(r,r+k)\]
denotes
\[(\exists \ i: \ 0 \leq i < k: \ x(s+i) \neq y(r+i))\]

From the above, we have for \(k > 0\) the following property:

\[0 < q \leq k \land x(s,s+k) = y(r,r+k)\]
\[\Rightarrow x(s+q,s+k) = y(r+q,r+k)\]

(0)

The notations for proof structures and programs have been adapted from [3], [4] and [5].

The development of the pattern matching program

For two integer sequences \(p(0,M)\) and \(t(0,N)\) (\(M \geq 1\) and \(N \gg M\)), a program is requested to determine whether \(p\) occurs as a continuous subsequence of \(t\) and, furthermore, if so, to find the position of the first occurrence of \(p\) in \(t\).

Formally, our program has to establish

\[R1 \text{ cor } RO\]

where

\[R1: (A u: \neg \text{match}(u))\]
\[R0: k = (\text{MIN } u: \text{match}(u): u)\]

and

\[\text{match}(u) = (0 \leq u \leq N-M) \land (t(u,u+M) = p(0,M))\]
To this end, we introduce the invariant

$$P_0 \land P_1,$$

where

$$P_0: t(k,k+j) = p(0,j) \land 0 \leq j \leq M \land 0 \leq k \leq N-j,$$

and

$$P_1: \forall u: 0 \leq u < k: \neg \text{match}(u).$$

P_0 and P_1 derive their importance from

$$P_0 \land P_1 \land j = M \Rightarrow R_0,$$

and

$$P_1 \land k > N-M \Rightarrow R_1.$$

$P_0 \land P_1$ is trivially established by "$k,j := 0,0$", and we can sketch our program as follows:

```highlight
\begin{verbatim}
| [ k, j: int 
  ; p(i: 0 \leq i < M), t(i: 0 \leq i < N): array of int 
  ; k, j := 0, 0 {P_0 \land P_1} 
  ; do j \neq M \land k \leq N-M \rightarrow 
      "increase the bound function 2*k + j of j and k under 
      invariance of P_0 \land P_1"
    od {P_0 \land P_1 \land (j = M \lor k > N-M), hence R_1 \lor R_0}
| .
\end{verbatim}
```

Now we investigate increases of j or k that cause an increase of the bound function.

Because j does not occur in P_1, for an increase of j we need to consider P_0 only. For the maintenance of P_0, apparently, at each iteration an increase
of \(j \) by one is adequate. And we derive

\[
\begin{align*}
\bar{P^0}_j^{j+1} &= t(k, k+j + 1) = p(0, j+1) \land 0 \leq j+1 \leq M \land 0 \leq k \leq N - (j+1) \\
\end{align*}
\]

If \(B \) holds, where

\[
B: t(k+j) \neq p(j),
\]

we know that if \(k \) were kept constant, an increase of \(j \) would destroy \(\bar{P^0}, \)
thus we increase \(k \). Because of

\[
B \Rightarrow \text{match}(k) \quad (1)
\]

an increase of \(k \) by 1 maintains \(P^1 \) under \(B \), and it trivially maintains \(P^0 \)
for \(j = 0 \).

As a consequence, "increase the bound function \(2 \cdot k + j \) of \(j \) and \(k \) under invariance
of \(\bar{P^0} \wedge P^1 \)" can be refined as the following alternative construct:

\[
\begin{align*}
\text{if } t(k+j) &= p(j) \rightarrow j := j+1 \{ \bar{P^0} \wedge P^1 \} \\
&\quad j = 0 \land t(k+j) \neq p(j) \rightarrow k := k+1 \{ \bar{P^0} \wedge P^1 \} \\
&\quad j \neq 0 \land t(k+j) \neq p(j) \rightarrow ? \\
\text{fi} \quad (2)
\end{align*}
\]

But for \(j \neq 0 \wedge B \), \(P^0 \) possibly allows a further increase of \(k \) in view of
what follows.

For \(0 < i \leq j \),

\[
\begin{align*}
t(k, k+j) &= p(0, j) \\
\Rightarrow \{(0)\} \\
t(k+i, k+j) &= p(i, j) \quad (3)
\end{align*}
\]
For $j \neq 0$, the equation

$$i: p(i,j) = p(0,j-i) \land 0 < i \leq j$$

(4)

has at least one solution, e.g. $i = j$.

Thanks to (3), we have for each solution i of (4)

$$P_0 \Rightarrow t(k+i,k+j) = p(0,j-i) \land 0 \leq j-i < j \land 0 \leq k+i \leq N-(j-i) .$$

Therefore, P_0 is maintained by

"$k,j := k+i,j-i$"

(5)

where i is any solution of (4).

On the other hand, if i satisfies

$$p(i,j) \neq p(0,j-i) \land 0 < i \leq j$$

we have, on account of (3),

$$P_0 \Rightarrow t(k+i,k+j) \neq p(0,j-i)$$

hence

$$P_0 \Rightarrow \neg \text{match}(k+i) .$$

(6)

For $j \neq 0$, let

$$f(j) = \text{MIN } i: p(i,j) = p(0,j-i) \land 0 < i \leq j: i) .$$

We conclude that

"$k,j := k+f(j),j-f(j)$"

(7)

maintains $P_0 \land P_1$ under B:

(i) thanks to (5), (7) maintains P_0, because $f(j)$ is a solution of (4);
(ii) in view of (1) and (6)

\[
(A \ i: \ 0 \leq i < f(j): \ P0 \land B \Rightarrow \neg \text{match}(k + 1))
\]

holds, so that (7) maintains P1 under B.

Consequently, the question mark in the alternative construct (2) can be replaced by (7), and we have developed our program.

The repetition in the program terminates, since \(2^k + j\) is bounded from above by \(2^N + M\) and increases by at least 1 at each iteration.

The computation of \(f(1,M)\)

The only problem left is to obtain an \(f(1,M)\) satisfying

\[
Rf: (A \ v: \ 0 < v < M: \ f(v) = (\text{MIN } i: D(i,v): i))
\]

where

\[
D(i,v): p(i,v) = p(0,v-i) \land 0 < i \leq v.
\]

In the standard fashion we derive from \(Rf\) an invariant \(Pf\) by replacing the constant upper bound \(M - 1\) by a suitably bounded variable \(k\):

\[
Pf: (A \ v: \ 0 < v \leq k: \ f(v) = (\text{MIN } i: D(i,v): i)) \land
\]

\[
1 \leq k \leq M - 1.
\]

"\(k := 1; f:(k) = 1\)" establishes \(Pf\), and we can sketch the computation of \(f(1,M)\) as follows:
The repetition in the sketch trivially terminates.

Now we refine "compute f(k+1)".

From the definition of f(k+1), i.e.

\[f(k+1) = \min (i: D(i,k+1): i) \]

and

\[(i \leq k \land D(i,k+1)) \Rightarrow D(i,k) \]

we conclude

\[D(f(k+1),k) \lor f(k+1) = k + 1. \] (8)

f(k) is the minimum solution of the equation

\[i: D(i,k), \] (9)

hence,

\[f(k) \leq f(k+1) \leq k + 1. \] (10)

In order to compute f(k+1), it consequently suffices to search the solutions of (9), starting with f(k), in increasing order in the light of the linear search theorem ([3]).
We observe that the largest solution of (9) is k. Thus, the search has the form

\[
\begin{align*}
j & := f(k) \\
\text{do } & j \neq k \land \neg D(j,k+1) \\
& j := F(j) \\
\text{od },
\end{align*}
\]

where $F(j)$ is the minimum solution larger than j of (9).

The search terminates, since $j < F(j) \leq k$. And

\[
Q: D(j,k) \land j \leq f(k+1)
\]

is an invariant of the search. The reason is:

(i) Q is established by "$j := f(k)$", on account of (10) and $D(f(k),k)$;

(ii) $D(F(j),k)$ holds according to the definition of $F(j)$;

(iii) $j \leq f(k+1) \land \neg D(j,k+1) \Rightarrow \{(8) \text{ and the definition of } F(j)\}

\[
F(j) \leq f(k+1).
\]

Considering $D(j,k) \land p(k) = p(k-j) \Rightarrow D(j,k+1)$, we obtain the following program to compute $f(k+1)$:

\[
\begin{align*}
&| [\begin{array}{l}
\text{j: int}
\end{array} \\
\text{j := f(k) } \{Q\} \\
; \begin{array}{l}
\text{do } j \neq k \land p(k) \neq p(k-j) \Rightarrow \\
\text{j := F(j) } \{Q \land (j = k \lor p(k) = p(k-j))\} \\
\end{array} \\
; \begin{array}{l}
\text{if } p(k) = p(k-j) \Rightarrow f:(k+1) = j \{j \leq f(k+1) \land D(j,k+1), \\
\text{ hence } f(k+1) = j\} \\
\end{array} \\
\text{fi} \\
\text{| } .
\end{align*}
\]
Finally, by using

\[p(j,k) = p(0,k-j) \land 0 < i \leq k-j \]

\[\Rightarrow \{(0)\} \]

\[p(j+i,k) = p(i,k-j) , \quad (12) \]

\(F(j) \) can be refined as follows:

\[
F(j) \\
= \text{[the definition of } F(j)] \\
= (\text{MIN } i: p(i,k) = p(0,k-i) \land j < i \leq k: i) \\
= j + (\text{MIN } i: p(j+i,k) = p(0,k-j-i) \land 0 < i \leq k-j: i) \\
= \{j \text{ is a solution of (9), hence (12)}\} \\
= j + (\text{MIN } i: D(i,k-j): i) \\
= \{ \text{the definition of } f(k-j) \} \\
= j + f(k-j) .
\]

Thanks to \(0 < j \leq k \land j \neq k \) and \(Pf, f(k-j) \) is defined. Therefore, in (11)
"\(j := F(j) \)" can be replaced by "\(j := j + f(k-j) \)", and we have completed the
computation of \(f(1,M) \).

Acknowledgement

I am greatly indebted to A.J.M. van Gasteren for her instructive comments and
several improvements. I would like to thank Edsger W. Dijkstra, W.H.J. Feijen,
J.G. Wiltink and the members of the Tuesday Afternoon Club for many valuable
suggestions.
References

