Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2^n zeros and ones that show each n-letter word exactly once

by

N.G. de Bruijn
The problem of finding the arrangements mentioned in the title became generally known through my paper [2] of 1946, in which the number of solutions was found to be $2^{n-1} - n$.

Quite recently Richard Peter Stanley (Massachusetts Institute of Technology) discovered that the problem had been proposed and solved half a century earlier in the French problem journal "l'Intermédiaire des Mathématiciens" in 1894. The problem was raised by A. de Rivière [14] and solved by C. Flye Sainte-Marie [4].

C. Flye Sainte-Marie found the same number $2^{n-1} - n$, and his method is more or less the same as the one in [2]. His style is of course not the one in which we write today, and it is very condensed. Therefore it is hard to read; nevertheless if we compare [2] to [4] we do not see much difference in content.

As appendices, the items [14], [4], [2] are reproduced at the end of this note.

It seems to be appropriate to end this note with some historical and bibliographical remarks.

After the problem was proposed and solved in 1894, it was entirely forgotten until 1934, when it was reintroduced by M.H. Martin [13]. Independently it was proposed around 1944 by the telecommunication engineer K. Posthumus (at that time at Philips Research Laboratories, Eindhoven). He conjectured the $2^{n-1} - n$, based on his count for $n = 1, 2, 3, 4, 5$. This conjecture was proved in [2], (cf. the presentations in [5], [7]). The oriented graphs that played a rôle in this count were produced independently and simultaneously by I.J. Good [6] (who used it for the existence proof, not for the count).
The corresponding counting problem for an alphabet with \(\sigma \) letters seems to have been first raised and solved in [1] (1951); the number is \((\sigma!)^{n-1}/\sigma^n\). That paper solved the problem by generalizing the directed graph method of [2] and [4], but also indicated how the count can be related to counting trees in a directed graph, the number of which can be expressed by a determinant. This determinant was not evaluated in [1]; the first paper in which it was achieved is [3] (1957). For this determinant method reference should be made to [8] and to the really very short presentation in [11].

The references in [11] may be used as a point of departure for tracing more literature, in particular papers treating algorithms for finding solutions, rather than counting the total number. In this context one might add a reference to Korobov ([9],[10]) who went beyond what was indicated in [6], using the construction for the production of "normal" real numbers in the sense of Borel. (A real number \(\alpha \) is called normal if, for every \(n \), in the sequence of words we get by taking \(n \) consecutive digits from the binary representation of \(\alpha \), each \(n \)-letter word has the same asymptotic frequency).

For the case of the \(\sigma \)-letter alphabet a special construction (although not an algorithm) was presented (as a solution to [14]) by W. Mantel [12] in 1897 with restriction to the case that \(\sigma \) is a prime. Mantel takes an \(n \)-th degree irreducible polynomial \(F(x) \) over the field of \(\sigma \) elements, with \(F(0) = 1 \) and develops \(x^{n-1}/F(x) \) in a power series \(a_0 + a_1x + \ldots \), where the coefficients are taken mod \(\sigma \). He says that Serret has shown that there are \(\phi(\sigma^{n-1}) \) possibilities for \(F \) such that \(a_0,a_1,a_2,\ldots \) has period \(\sigma^{n-1} \). If we now take the array \(0,a_0,\ldots,a_{\sigma^{n-1}} \) and turn it into a circular array by pasting head to tail, we get a cycle showing each \(n \)-letter word exactly once.

This construction of Mantel was duplicated 50 years later in [15].
References

4. C. Flye Sainte-Marie, Solution to question nr. 48, l'Intermédiaire des Mathématiciens 1 (1894) 107-110.

14. A. de Rivière, Question nr. 48, l'Intermédiaire des Mathématiciens 1, (1894) 19-20.

Appendix 1. The problem (reference [14])

48. [J1 a 2] Si l'on considère tous les arrangements \(n \) à \(n \) qu'on peut former avec deux objets, il est toujours possible de trouver un arrangement de \(2^n \) termes (formé avec les mêmes deux objets) \(a_1, a_2, a_3, \ldots, a_n \), tel que les groupes
\[
\begin{align*}
a_1, & \quad a_2, \quad \ldots, \quad a_n; \\
& \quad \ldots, \quad a_{n-1}; \\
& \quad a_n, \quad a_{n-1}, \quad \ldots, \quad a_1;
\end{align*}
\]
représentent tous les arrangements \(n \) à \(n \) dont le nombre est évidemment \(2^n \). Cette proposition est vérifiée expérimentalement jusqu'à des limites suffisantes pour en présumer l'exactitude. Est-elle déjà connue? Pourrait-on en donner une démonstration? Y a-t-il en général plus d'une espèce de solutions et dans ce cas combien?

A. de Rivière.

Appendix 2. Solution by C. Fluy Sainte-Marie (reference [4])

48. (A. de Rivière). — Soient \(a \) et \(b \) les deux objets entrant dans la composition des arrangements considérés. Concevons, disposés dans l'ordre alphabétique, tous les arrangements de \(n-1 \) lettres qu'on peut former avec ces deux caractères et désignons chacun d'eux par le rang qu'il occupe. Tout arrangement \(A \) de \(n \) lettres, composé avec \(a \) et \(b \), pourra être figuré par un couple, ou groupe de deux termes dont le premier (antécédent) désigne l'arrangement formé par les \(n-1 \) premières lettres, et le second (conséquent), l'arrangement formé par les \(n-1 \) dernières lettres de \(A \). Les \(2^n \) arrangements de \(n \) lettres seront, ainsi, figurés par les couples
\[
\begin{array}{c|c}
1 & 1; \\
2 & 2; \\
3 & 3; \\
\vdots & \vdots \\
2^{n-3} & 2^{n-3} + 1; \\
2^{n-2} & 2^{n-2} + 1; \\
2^{n-1} & 2^{n-1} + 1.
\end{array}
\]
A l'aide de ce tableau, dans lequel un même terme entre toujours deux fois comme antécédent et deux fois comme conséquent, les arrangements voulus se construisent aussi facilement que les chaînes composées avec les pièces d'un jeu de dominos se succédant suivant la règle de ce jeu.

Supposons, en effet, que tous les couples du Tableau ci-dessus, dont je désignerai l'ensemble par T_n, soient réunis dans une même chaîne C_n telle que chaque terme soit, à la fois, conséquent de celui qui précède et antécédent de celui qui suit; cette chaîne formera nécessairement un circuit fermé; pour en déduire un arrangement satisfaisant aux conditions voulues, il suffira de remplacer chaque terme impair par a et chaque terme pair par b. Ainsi, le nombre des solutions distinctes du problème est égal au nombre des chaînes C_n possibles, d'ordres circulaires différents. Je désigne ce nombre par $ζ(n)$.

Je dirai, en général, que l'ensemble des couples formés par deux termes consécutifs d'une chaîne constituant un circuit fermé est la base de cette chaîne. Ainsi T_n est la base des chaînes C_n et les chaînes C_n appartiennent à la base T_n.

J'appellerai groupe carré un ensemble de quatre couples tels que $xz', \overline{z}y', x'z, \overline{z}'y$, et je représenterai ce groupe par la notation $\begin{vmatrix} x & x' \\ \overline{z} & \overline{z}' \end{vmatrix}$.

Cela posé, soit une base quelconque B, dans laquelle chaque terme entre deux fois seulement comme antécédent, deux fois seulement comme conséquent, et contenant un groupe carré $\begin{vmatrix} x & x' \\ \overline{z} & \overline{z}' \end{vmatrix}$; soient B' et B'' deux nouvelles bases obtenues en substituant, dans B, à ce groupe carré, d'une part les couples xz' et $\overline{z}y'$, répétés chacun deux fois (base B'), d'autre part, les couples $x'z$ et $\overline{z}'y'$ pareillement répétés (base B''); soient, enfin, N, N', N'' les nombres des chaînes appartenant respectivement aux bases B, B', B'':

On a, en général, $N = \zeta(N' + N'')$, à moins que les bases B' et B'' ne contiennent plus que des couples répétés chacun deux fois; auquel cas, on a $N = N' + N''$ (*).

(*) Ce théorème est une conséquence de la remarque suivante:
Chacune des suites de termes qui relient l'un à l'autre les quatre couples
On pourra donc, successivement, éliminer de la base T_n les 2^{n-2} groupes carrés qui la composent et lui substituer un certain nombre de bases Θ qui ne contiendront plus, chacune, que des couples répétés deux fois. En désignant par γ le nombre total des chaînes Γ appartenant à ces bases, on aura, d'après le théorème précédent, $\gamma(n) = 2^{n-1} - 1$.

Je dis ensuite que $\gamma = \gamma(n-1)$. En effet, chaque base Θ engendre une chaîne unique ou n'en engendre aucune; γ est donc le nombre des bases Θ capables d'engendrer une chaîne Γ. Remarquons que toute chaîne Γ se divise en deux suites ξ identiques; or, dans une suite ξ, tout couple appartient à un groupe carré de T_n et l'ordre de succession des groupes γ est entièrement défini par l'ordre de succession des groupes auxquels ils appartiennent. Si, en observant l'ordre de succession de ceux-ci, on remplace chaque groupe carré par le plus petit de ses antécédents, on vérifie facilement que la chaîne corrélatrice de ξ ainsi formée appartient à la base T_{n-1}, inversement, soit k une des chaînes C_{n-1} appartenant à T_{n-1}; à chaque terme ξ de cette chaîne correspond un groupe carré de T_n ayant pour antécédents $\gamma = 2^{n-2} - 1$; si, dans k, on augmente de 2^{n-2} tout terme ne formant pas, avec celui qui le précède, un couple de T_n, on du groupe carré étant représentée par une seule lettre, toute chaîne appartenant à Γ affectera, selon l'ordre sous lequel ces couples s'y succèdent, un des six disposifs suivants:

1. $a'\xi b$, $a'\xi h$, $a'\xi b$, $a'\xi z$, $a'\xi h$, $a'\xi z$.
2. $a'\xi b$, $a'\xi h$, $a'\xi b$, $a'\xi z$, $a'\xi h$, $a'\xi z$.
3. $a'\xi b$, $a'\xi h$, $a'\xi b$, $a'\xi z$, $a'\xi h$, $a'\xi z$.
4. $a'\xi b$, $a'\xi h$, $a'\xi b$, $a'\xi z$, $a'\xi h$, $a'\xi z$.
5. $a'\xi b$, $a'\xi h$, $a'\xi b$, $a'\xi z$, $a'\xi h$, $a'\xi z$.
6. $a'\xi b$, $a'\xi h$, $a'\xi b$, $a'\xi z$, $a'\xi h$, $a'\xi z$.

Chaque de ces disposifs est composé de quatre suites (séparées par les virgules) qu'on peut écrire dans six ordres circulaires différents; il en résultera ainsi, chaque fois, six chaînes généralement distinctes entre elles, dont quatre appartiennent à la base B et deux aux bases B ou B'. Si B' et B ne contiennent plus que des couples répétés deux fois, il n'y a de possibilité que les disposifs (3) ou (6), dont les quatre suites, par leurs six arrangements, ne produisent, dans ce cas, qu'une chaîne de base B et une chaîne de base B' ou B.

Si l'on a $z = z'$, ou $\varphi = \varphi'$, les disposifs sont modifiés, mais le théorème subsiste.
reconnaît que la suite ainsi formée est une suite \(z \), dont les termes appartiendront aux mêmes groupes carrés de \(T_n \) et dont la chaîne correlative est précisément la chaîne \(K \).

On a donc \(z(n) = 3^{n-1}z(n - 1) \); d'ailleurs \(z(2) = 1 \), on en déduit, par un calcul facile, la formule générale

\[
z(n) = 3^{n-1}z(n).
\]

G. FLYE SAINTE-MARIE.
Mathematics. — *A combinatorial problem.* By N. G. de Bruijn. (Communicated by Prof. W. van der Woude.)

(Communicated at the meeting of June 29, 1946.)

1. Some years ago Ir. K. Posthumus stated an interesting conjecture concerning certain cycles of digits 0 or 1, which we shall call P_n-cycles. For $n = 1, 2, 3, \ldots$ a P_n-cycle be an ordered cycle of 2^n digits 0 or 1, such that the 2^n possible ordered sets of n consecutive digits of that cycle are all different. As a consequence, any ordered set of n digits 0 or 1 occurs exactly once in that cycle.

For example, a P_1-cycle is 001, respectively showing the triples 000, 001, 010, 011, 100, 101, 110, 111, which are all possible triples indeed. For $n = 1, 2, 3, 4$, the P_n-cycles can easily be found.

We have only one P_1-cycle, viz. 01, and only one P_2-cycle, viz. 0011. There are two P_3-cycles, viz. 00010111 and 11101000, and sixteen P_4-cycles, eight of which are

\[
\begin{align*}
0001 & \quad 1001 & \quad 0111 & \quad 1110 & \quad 0011 & \quad 1100 & \quad 0101 & \quad 1000 \\
0010 & \quad 1010 & \quad 0110 & \quad 1111 & \quad 0011 & \quad 1101 & \quad 0101 & \quad 1000 \\
0001 & \quad 0101 & \quad 1001 & \quad 0111 & \quad 1100 & \quad 0011 & \quad 1110 & \quad 0010 \\
0011 & \quad 0111 & \quad 1011 & \quad 0001 & \quad 1101 & \quad 0011 & \quad 0100 & \quad 1110 \\
0100 & \quad 1001 & \quad 0111 & \quad 1100 & \quad 0011 & \quad 1110 & \quad 0010 & \quad 1000 \\
0110 & \quad 1011 & \quad 0001 & \quad 1110 & \quad 0011 & \quad 0101 & \quad 1000 & \quad 0011 \\
1001 & \quad 0111 & \quad 1011 & \quad 0001 & \quad 1110 & \quad 0010 & \quad 1000 & \quad 0011 \\
1010 & \quad 0011 & \quad 1001 & \quad 1110 & \quad 0010 & \quad 1000 & \quad 0011 & \quad 1110 \\
1100 & \quad 0011 & \quad 1001 & \quad 1110 & \quad 0101 & \quad 1000 & \quad 0011 & \quad 1110 \\
1101 & \quad 0011 & \quad 1001 & \quad 1110 & \quad 0101 & \quad 1000 & \quad 0011 & \quad 1110 \\
1110 & \quad 0011 & \quad 1001 & \quad 1110 & \quad 0101 & \quad 1000 & \quad 0011 & \quad 1110 \\
1111 & \quad 0011 & \quad 1001 & \quad 1110 & \quad 0101 & \quad 1000 & \quad 0011 & \quad 1110 \\
\end{align*}
\]

the remaining eight being obtained by reversing the order of these, respectively.

Ir. Posthumus found the number of P_n-cycles to be 2048, and so he had the following number of P_n-cycles for $n = 1, 2, 3, 4, 5$:

\[
\begin{align*}
1 & \quad 1 & \quad 2 & \quad 2 & \quad 2^4 & \quad 2^4 & \quad 2^5 \\
1 & \quad 2^3 & \quad 2^2 & \quad 2^3 & \quad 2^4 & \quad 2^5 & \quad 2^5 \\
1 & \quad 2^3 & \quad 2^4 & \quad 2^3 & \quad 2^4 & \quad 2^5 & \quad 2^5 \\
1 & \quad 2^3 & \quad 2^4 & \quad 2^3 & \quad 2^4 & \quad 2^5 & \quad 2^5 \\
1 & \quad 2^3 & \quad 2^4 & \quad 2^3 & \quad 2^4 & \quad 2^5 & \quad 2^5 \\
1 & \quad 2^3 & \quad 2^4 & \quad 2^3 & \quad 2^4 & \quad 2^5 & \quad 2^5 \\
1 & \quad 2^3 & \quad 2^4 & \quad 2^3 & \quad 2^4 & \quad 2^5 & \quad 2^5 \\
1 & \quad 2^3 & \quad 2^4 & \quad 2^3 & \quad 2^4 & \quad 2^5 & \quad 2^5 \\
\end{align*}
\]

Thus he was led to the conjecture, that the number of P_n-cycles be $2^{2^n-1} - n$ for general n. In this paper his conjecture is shown to be correct. Its proof is given in section 3, as a consequence of a theorem concerning a special type of networks, stated and proved in section 2. In section 4 another application of that theorem is mentioned.

2. We consider a special type of networks, which we shall call T-nets.

1) These arise from a practical problem in telecommunication.

2) With this notation, 00010111, 00101110, etc., are to be considered as the same cycle. (Properly speaking, the digits must be placed around a circle.) On the other hand we do not identify the cycles 00010111 and 11101000, the second of which is obtained by reversing the order of the first one.

Henceforth we simply write 00010111 instead of 0010011.
A \(T \)-net of order \(m \) will be a network of \(m \) junctions and \(2m \) one-way roads (oriented roads), with the property that each junction is the start of two roads and also the finish of two roads. The network need not lie in a plane, or, in other words, viaducts, which are not to be considered as junctions, are allowed. Furthermore we do not exclude roads leading from a junction to that same junction, and we neither exclude pairs of junctions connected by two different roads, either in the same, or in opposite direction. Figs. 1a and 1b show examples of \(T \)-nets, of orders 3 and 6, respectively.

In a \(T \)-net we consider closed walks, with the property that any road of the net is used exactly once, in the prescribed direction. Such walks will be called "complete walks" of that \(T \)-net. Two complete walks are considered to be identical, if, and only if, the sequence of roads \(^3\) gone through in the first walk is a cyclic permutation of that in the second walk. The nets of figs. 1a and 1b admit 2 and 8 complete walks, respectively.

The number of complete walks of a \(T \)-net \(N \) be denoted by \(|N|\). This number \(|N|\) is zero, if \(N \) is not connected, that is to say, if \(N \) can be divided into two separate \(T \)-nets \(^4\).

We now describe a process, which we call the "doubling" of a \(T \)-net, and which is illustrated by the relation between the nets of figs. 1a and 1b. Be \(N \) a \(T \)-net of order \(m \), with junctions \(A, B, C, \ldots \), and roads \(p, q, r, \ldots \). Then we construct the "doubled" net \(N^* \) by taking \(2m \) junctions \(P, Q, R, \ldots \), corresponding to the roads of \(N \), respectively. We construct a one-way road from a junction \(P \) to a junction \(Q \), if the corresponding roads \(p \) and \(q \) of \(N \) have the property, that the finish of \(p \) lies in the same junction of \(N \) as the start of \(q \). Thus \(4m \) roads are obtained in \(N^* \), and it is easy to see that \(N^* \) is a \(T \)-net; its order is \(2m \).

\(^3\) If we should replace the word "roads" by "junctions" here, this sentence would get another meaning, since two junctions may be connected by two roads in the same direction.

\(^4\) The converse is also true: for a connected \(T \)-net we have \(|N| > 0 \). However, we do not need this result in the proof of our main theorem.
A remarkably simple relation exists between the numbers of complete walks of \(N \) and \(N^\ast \):

Theorem. If \(N \) is a \(T \)-net of order \(m \) \((m = 1, 2, 3, \ldots)\) and \(N^\ast \) is the doubled net, then we have

\[
|N^\ast| = 2^{m-1} \cdot |N|.
\]

(1)

Proof. We first consider two cases, in which (1) is easily established.

Case 1. If \(N \) is not connected, the same holds for \(N \), and hence

\[
|N| = |N^\ast| = 0.
\]

Case 2. We now consider the case, where each junction of \(N \) is connected with itself. For any value of \(m \), only one connected net of this type exists, consisting of junctions \(A_1, A_2, \ldots, A_m \), connected by roads

\[
A_1A_2, A_2A_3, \ldots, A_mA_1, A_1A_2, A_2A_3, \ldots, A_mA_m, \ldots.
\]

For this net we have \(|N| = 1\), and some quite trivial considerations show that

\[
|N^\ast| = 2^{m-1}.
\]

We prove the general case by induction. For \(m = 1 \) only one \(T \)-net is possible, consisting of one junction \(A \) and two roads leading from \(A \) to \(A \). This net belongs to case 2 mentioned above, and we have \(|N| = |N^\ast| = 1\).

Now suppose (1) to be valid for all \(T \)-nets of order \(m - 1 \) \((m > 1)\), and be \(N \) a \(T \)-net of order \(m \). We may suppose to be able to choose a junction \(A \), not connected with itself, for otherwise \(N \) belongs to case 2. Hence we have four different roads \(p, q, r, s; p \) and \(q \) leading to \(A \) and \(s \) starting from \(A \).

A net \(N_1 \) arises from \(N \) by omitting \(p, q, r, s \) and constructing two new roads, one from the start of \(p \) to the finish of \(r \), and one from the start of \(q \) to the finish of \(s \).

A second net \(N_2 \) arises in a similar way, but now by combining \(p \) with \(s \) and \(q \) with \(r \). This is illustrated by fig. 2; the parts of the nets, which are not drawn, are equal for \(N, N_1 \), and \(N_2 \).

A complete walk of \(N \) corresponds to a complete walk either of \(N_1 \), or of \(N_2 \), and so we have

\[
|N| = |N_1| + |N_2|.
\]

(2)

On doubling the nets \(N_1 \) and \(N_2 \) we obtain nets \(N_1^\ast \) and \(N_2^\ast \), respectively. We shall prove

\[
|N^\ast| = 2 |N_1^\ast| + 2 |N_2^\ast|.
\]

(3)

This relation can also be interpreted without introducing the doubling process. Namely, a complete walk of \(N^\ast \) corresponds to a closed walk through \(N \), with the property that any road of \(N \) is used exactly twice in that walk, and such that at any junction each of the four possible combinations of a finish and a start is taken exactly once. We can give an even simpler interpretation in terms of \(N^\ast \), for a complete walk of \(N \) corresponds to a closed walk through \(N^\ast \), visiting any junction of \(N^\ast \) exactly once. But, since not every \(T \)-net can be considered as a \(N^\ast \), this does not lead to an essential simplification of our theorem.

\(AB \) denotes a one-way road leading from \(A \) to \(B \).
\(N_1^*\) and \(N_2^*\) arise directly from \(N^*\) by simple operations. If \(P, Q, R, S\) are the junctions of \(N^*\) corresponding to the roads \(p, q, r, s\) of \(N\), we obtain \(N_1^*\) by omitting the roads \(PR, PS, QR, QS\) from \(N^*\), and identifying the four junctions two by two: \(P = R\) and \(Q = S\). \(N_2^*\) is obtained analogously \((P = S\) and \(Q = R)\). Again, fig. 2 shows the corresponding details of \(N^*, N_1^*,\) and \(N_2^*\).

Henceforth we deal with \(N^*, N_1^*,\) and \(N_2^*\), and no longer consider \(N, N_1, N_2\).

We now first introduce the term "path". A path is an ordered sequence of roads, no two of which are identical, such that the finish of each road is the start of the next one. The last one, however, need not lead to the start of the first one.

A complete walk of \(N^*, N_1^*,\) or \(N_2^*\), contains four special paths, each one leading from one of the junctions \(R, S\) to one of the junctions \(P, Q\), such that any road of \(N^*\), except \(PR, PS, QR, QS\), belongs to just one of those paths. Choosing a definite set of four paths, according to the conditions just mentioned, we consider all (possibly existing) complete walks of \(N, N_1\), and \(N_2\) containing those paths. The numbers of these complete walks be denoted by \(n, n_1, n_2\), respectively.

The numbers \(n, n_1, n_2\) admit of a simple interpretation. Be \(N^{**}\) the net arising from \(N^*\) on replacing each of the four paths by one single road, with the same start and finish as the corresponding path. In the same way
nets N_1^{**} and N_2^{**} arise from N_1^* and N_2^*. Evidently $n = |N^{**}|$, $n_1 = |N_1^{**}|$, $n_2 = |N_2^{**}|$. We now show, that

$$n = 2n_1 + 2n_2$$

for which we have to consider two different cases.

Case A (fig. 3). The paths starting from R lead to different junctions.

The four paths thus respectively lead from R to P, from R to Q, from S to P, and from S to Q.

Now N^{**} consists of the junctions P, Q, R, S, with the roads PR, PS, QR, QS, RP, RQ, SP, SQ. This net admits four different complete walks. N_1^{**} consists of only two junctions P and Q, with roads PP, PQ, QP, QQ. This net admits only one complete walk. The net N_2^{**} is equivalent to N_1^{**}. Thus we have obtained $n = 4$, $n_1 = 1$, $n_2 = 1$, and (4) holds true.

Case B (fig. 4). The paths starting from R lead to one and the same junction, say P (the same obtains for Q). We now have the four paths RP, RP, SP, SQ.

Now N^{**} consists of the junctions P, Q, R, S, with roads PR, PS, QR, QS, RP, RQ, SP, SQ. This net admits four complete walks. N_1^{**} consists of two junctions P and Q, with roads PP, PP, QQ, QQ, and so it is not connected. N_2^{**} consists of P, Q, with roads PQ, PQ, QP, QP, admitting two complete walks. Now we have $n = 4$, $n_1 = 0$, $n_2 = 2$, and hence (4) holds also true in case B.

Formula (4) being proved for any admissible system of four paths, the truth of (3) is now evident.

Our theorem is an immediate consequence of (3). Namely, N_1 and N_2 being nets of order $m - 1$, our assumption of induction yields

$$|N_1^*| = 2^{m-2} |N_1|, \quad |N_2^*| = 2^{m-2} |N_2|.$$
and by (3) and (2) we now have

\[|N^*| = 2^1 N_1^* + 2^2 N_2^* = 2^{n-1} |N_1| + 2^{n-1} |N_2| = 2^{n-1} |N|. \]

3. The theorem of the preceding section provides a proof of Posthumus' conjecture. For \(n \geq 2 \), \(N_n \) be the following network of order \(2^n \). As junctions we take the ordered \(n \)-tuples of digits 0 or 1, and we connect two \(n \)-tuples \(A \) and \(B \) by a one-way road \(AB \), if the last \(n-1 \) digits of \(A \) correspond to the first \(n-1 \) digits of \(B \). Fig. 5 shows the nets \(N_2 \) and \(N_3 \).

On "doubling" this net \(N_n \) we obtain the net \(N_{n+1} \). Namely, any road \(AB \) of \(N_n \) (see \(N_2 \) in fig. 5) corresponds to an ordered \((n+1) \)-tuple.

![Fig. 5](image_url)

consisting of the digits of \(A \), followed by the last digit of \(B \) (or, what is the same, the first digit of \(A \), followed by the digits of \(B \)). Two \((n+1) \)-tuples \(P, Q \), turn out to be connected in \(N_{n+1} \), if the last \(n \) digits of the first one correspond to the first \(n \) digits of the second one, since these \(n \) digits characterize the common finish and start of the roads \(p \) and \(q \) of \(N_n \). Hence \(N_n^* = N_{n+1}^* \).

A complete walk of \(N_n \) leads to a \(P_{n+1} \)-cycle in the following way. If such a walk consecutively goes through the roads \(AB, BC, \ldots, ZA \), we write down consecutively, the first digit of \(A \), the first digit of \(B \), ..., the first digit of \(Z \). This sequence, considered as a cycle, is a \(P_{n+1} \)-cycle. Namely, on taking the first digits of \(n + 1 \) consecutive junctions \(A, B, C, \ldots \) of the walk under consideration, we obtain the \((n+1) \)-tuple, belonging to the road \(AB \). The walk in \(N_n \) being complete, it is now clear that any \((n+1) \)-tuple occurs exactly once in our cycle.

Conversely, any \(P_{n+1} \)-cycle arises from a complete walk in \(N_n \) by the
described process, and different complete walks lead to different \(P_{n+1} \)-cycles. Hence the number of \(P_{n+1} \)-cycles equals \(|N_n|\).

We now prove Posthumus' conjecture by induction. For \(n = 1, 2, 3 \) its truth is already established in section 1. Now take \(n \geq 3 \), and suppose the number of \(P_n \)-cycles to be \(2^{2n-1} - n \), whence \(|N_{n-1}| = 2^{2n-1} - n\). The order of \(N_{n-1} \) being \(2^{n-1} \), the theorem of section 2 yields

\[
|N_{n-1}| = 2^{2n-1} - 1, \quad |N_{n-1}|
\]

and it follows

\[
N_n = 2^{n-1} - 1 \cdot 2^{2n-1} - n = 2^{2n-1} - n.
\]

The number of \(P_{n+1} \)-cycles equalling \(|N_n|\). Posthumus' conjecture turns out to be true.

4. Another application of section 2 is the following one. We call a \(n \)-tuple of digits 0, or 2 admissible, if no two consecutive digits are equal; the last digit, however, may be the same as the first one. The number of admissible \(n \)-tuples is easily shown to be \(3 \cdot 2^{n-1} \). As a \(Q_n \)-cycle we now define an ordered cycle of 3 \(2^{n-1} \)-digits 0,1 or 2, such that any admissible \(n \)-tuple is represented once by \(n \) consecutive digits of the cycle. For instance twelve \(Q_n \)-cycles exist. Two of them are 012010202121 and 012020102121, whereas the other ten are found by applying permutations of the symbols 0,1 and 2.

For general \(n \geq 1 \), the number of \(Q_n \)-cycles amounts to \(3 \cdot 2^{3n-2} - n-1 \). A proof can be given completely analogous to that in section 3.

Eindhoven, June 1946.

Natuurkundig Laboratorium der
N.V. Philips' Gloeilampenfabrieken.