System Identification in Communication with Chaotic Systems

Henri Huijberts, Member, IEEE, Henk Nijmeijer, Fellow, IEEE, and Rob Willems

Abstract—Communication using chaotic systems is considered from a control point of view. It is shown that parameter identification methods may be effective in building reconstruction mechanisms, even when a synchronizing system is not available. Three worked examples show the potentials of the proposed method.

Index Terms—Chaotic systems, communication, system identification.

I. INTRODUCTION

In recent years there has been a tremendous interest in studying the behavior of complex systems. Two particularly interesting ideas which have emerged during this time are (chaos) synchronization and chaos control. Recent reviews on these subjects can be found in, for instance, two special issues devoted to the subject, see [12] and [18] where, in fact, [12] is a follow up of an earlier special issue on the same subject of the same journal ([3]).

Synchronization and controlled synchronization of complex/chaotic systems is a topic that has become popular because of its possible use in communication, see [23] and [22]. Recently, in [19] (motivated by Ding and Ott [7], see also [17], and [25]) a control perspective on synchronization was given which enables us to resolve various synchronization problems as an observer problem. Thus, [19] illustrates, among other things, the benefits of incorporating control theoretic ideas in the study of communication using chaotic systems.

It is the purpose of the present paper to further illustrate these benefits. More specifically, we will look at some problems in communication using chaotic systems for which (standard) synchronization-based schemes may not yield the reconstruction of encoded messages, but that can be resolved using control theoretic ideas. The present paper is an expanded version of the paper [10].

Communication using chaotic systems has received quite some attention in the literature over the last few years (see, e.g., [5], [8], [13], and [31]). In communication using chaotic systems, one considers a transmitter system Σ_T of the form

$$\dot{\mathbf{x}} = f(x, \lambda), \quad x \in \mathbb{R}^n$$

$$y = h(x), \quad y \in \mathbb{R}$$

(1)

where λ is a time-varying message satisfying $\lambda_{\text{min}} \leq \lambda(t) \leq \lambda_{\text{max}}$ and $y \in \mathbb{R}$ is the transmitted signal (i.e., the coded message). It is assumed that the system Σ_T is chaotic (or at least sufficiently complex) for all constant λ satisfying $\lambda_{\text{min}} \leq \lambda \leq \lambda_{\text{max}}$. The task is now to build a receiver system Σ_R that reconstructs the message $\lambda(t)$ from the coded message $y(t)$.

The communication setting as described in (1) obviously is an idealization, since no effects like measurement noise, bandwidth limitations, modeling uncertainties, and the like are considered. Obviously, in a practical setup one has to cope with all such elements. However, this is not the aim of this paper. We will study an ideal communication system (1), and propose a means of reconstructing (slowly time-varying) signals λ from the chaotic transmitted signal y. A short discussion about the more practical issues mentioned will be given in the last section.

If one considers the problem of reconstruction of λ, as described above from a control theoretic point of view, two possible ways to approach the problem come to mind. The first approach is that of system inversion. Interpreting λ in (1) as an input and y as a measurement, one sees that (1) gives a mapping from λ to y. In the problem of system inversion, the task is to find an (asymptotic) inverse of this mapping. This approach will be pursued in future research (note, however, that this idea has also been addressed in [8]). The second approach, that will be followed in this paper and which in a sense was initiated for a particular case by Corron and Hahs in [5], is that of system identification. In system identification, the task is to estimate unknown (possibly slowly time-varying) parameters of a system, based on measurements taken from the system. For linear systems, system identification is well-established (for an overview see, e.g., [28]). In this paper, it will be shown on three examples that these identification methods may be helpful in communication using chaotic systems. Although all three examples concern chaotic and, thus, nonlinear systems, it is possible to use the standard linear identification algorithms once the systems are decomposed and/or transformed properly.

The organization of this paper is as follows. In Section II, we first introduce three examples that illustrate that parameter identification methods may be effective in communication with chaotic systems. In Section III, the essential identification background will be reviewed. In Sections IV–VI, a reconstruction mechanism for each of the three examples will be derived. In
the first example, it will be shown among others that the reconstruction scheme that was proposed by Corron and Hahs in [5] fits well in the identification-based approach to communication. In the last two examples, we will see that the existence of a synchronizing subsystem is not necessary for the existence of a reconstruction mechanism. Rather, one will typically have that (partial) synchronization occurs after reconstruction. In Section VI, classes of systems to which identification-based reconstruction schemes may be applied will be indicated. In Section VII, conclusions and a discussion of the proposed schemes will be given.

II. PARAMETER IDENTIFICATION METHODS

In this section, we briefly introduce the so-called equation error identifier that may be used to estimate unknown parameters for linear time-invariant systems.

At first sight, it may seem somewhat strange that parameter identification methods for linear systems may be used for building reconstruction mechanisms in communication with chaotic (and thus nonlinear) systems. Therefore, we will first look at three examples illustrating that indeed linear parameter identification methods may be useful in the design of a reconstruction mechanism. After having introduced these examples, we will review the essential identification background.

Example 1: Consider the following set up for communication using chaotic waveforms that was proposed by Corron and Hahs in [5]. The transmitter is a three-dimensional (3-D) system \(\Sigma_T \) of the form

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, x_3) + g(x_1, x_2, x_3)\lambda \\
\dot{x}_2 &= f_2(x_1, x_2, x_3) \\
\dot{x}_3 &= f_3(x_1, x_2, x_3) \\
y &= x_1
\end{align*}
\]

(2)

where \(\lambda \) is a message that is mainly slowly time varying (i.e., \(\lambda \) is slowly time varying for most of the time, but may exhibit occasional jumps) and satisfies \(\lambda_{\min} \leq \lambda(t) \leq \lambda_{\max} \) (\(\forall t \)). Furthermore, \(y \in \mathbb{R} \) is the transmitted signal (i.e., the coded message). Also, a second system is considered that has the form

\[
\begin{align*}
\dot{\hat{x}}_1 &= f_1(\hat{x}_1, \hat{x}_2, \hat{x}_3) + g(\hat{x}_1, \hat{x}_2, \hat{x}_3) \\
\dot{\hat{x}}_2 &= f_2(\hat{x}_1, \hat{x}_2, \hat{x}_3) \\
\dot{\hat{x}}_3 &= f_3(\hat{x}_1, \hat{x}_2, \hat{x}_3) \\
y &= x_1
\end{align*}
\]

(3)

where \(\hat{x}_i(t) \) is the estimated state of the system at time \(t \).

We now show that the problem of estimating \(\lambda \) may be viewed as a linear parameter identification problem. If one assumes that the systems (2) and (3) have synchronized, the dynamics of \(y \) in (2) are given by

\[
g(t) = u_1(t) + \lambda u_2(t)
\]

(5)

where

\[
\begin{align*}
u_1(t) &= f_1(g(t), \hat{x}_2(t), \hat{x}_3(t)) \\
u_2(t) &= g(y(t), \hat{x}_2(t), \hat{x}_3(t)).
\end{align*}
\]

(6)

We then see that (5) may be interpreted as a linear time-invariant system with output \(y \) and inputs \(u_1, u_2 \). Our task is now to obtain a mechanism that estimates \(\lambda \) for the linear system (5), based on the measurements \(y, u_1, u_2 \). This problem may be interpreted as a linear parameter identification problem and will be treated as such in the sequel.

Note that in the above example the distance between the message \(\lambda \) and the transmitted signal \(y \) is small in the sense that already the first time derivative of \(y \) explicitly depends on \(\lambda \) (in control theoretic terms, this is expressed by saying that the relative degree (cf. [11]) of \(y \) with respect to \(\lambda \) equals 1). As will be argued in the last section, this might be a drawback if one would like to use the above scheme for private communication. Therefore, from the point of view of private communication, it might be worthwhile to consider schemes where the relative degree of \(y \) with respect to \(\lambda \) is greater than 1. The following two examples have this property. Furthermore, these examples illustrate that when one considers systems with a relative degree that is greater than one, the assumption of the existence of a synchronizing subsystem will, in general, not be of use any more.

Example 2: In this example, we consider Chua’s circuit, which in dimensionless form is described by the equations

\[
\begin{align*}
\dot{x}_1 &= \alpha(-x_1 + x_2 - \phi(x_1)) \\
\dot{x}_2 &= x_1 - x_2 + x_3 \\
\dot{x}_3 &= -\lambda x_2
\end{align*}
\]

(7)

where

\[
\phi(x_1) = m_1 x_1 + \frac{m_0 - m_1}{2}[|x_1 + 1| - |x_1 - 1|]
\]

and \(\lambda \) is a mainly slowly time-varying message satisfying \(23 < \lambda(t) < 31 \) (\(\forall t \)). For constant \(\lambda \) in this range and \(\alpha = 15.6, m_0 = -(8/7), m_1 = -(5/7) \), this system is known to have a so-called double scroll chaotic attractor (see, e.g., [1]). We assume that \(y = x_2 \) is the transmitted signal. Note that, although it has been shown experimentally that for constant \(\lambda \), the \(\{x_1, x_3\} \)-subsystem synchronizes with the system

\[
\begin{align*}
\dot{\hat{x}}_1 &= \alpha(-\hat{x}_1 + x_2 - \phi(\hat{x}_1)) \\
\dot{\hat{x}}_2 &= x_1 - \hat{x}_2 + \hat{x}_3 \\
\dot{\hat{x}}_3 &= -\lambda \hat{x}_2
\end{align*}
\]

(8)

(see, e.g., [4]), we cannot use this synchronizing subsystem in our reconstruction mechanism, since it explicitly depends on the unknown parameter \(\lambda \). In order to come up with a reconstruction scheme for \(\lambda \), we first assume that, besides \(x_2 \), we can also measure \(x_1 \). The equations for \(x_2 \) and \(x_3 \) in (7) then have the following form:

\[
\begin{align*}
\dot{\hat{x}}_2 &= -\hat{x}_2 + x_3 + u \\
\dot{\hat{x}}_3 &= -\lambda \hat{x}_2 \\
y &= x_2
\end{align*}
\]

(9)

where we interpret \(u := x_1 \) as a known input. Thus, (9) has the form of a linear control system depending on an unknown parameter \(\lambda \), so that again linear parameter estimation methods may be used to obtain a reconstruction mechanism for \(\lambda \).

In the above example the relative degree (the distance between \(\lambda \) and \(y \)) equals two. We can go one step further with a 3-D chaotic transmitter, as is shown in the following example where the relative degree equals three.
Example 3: We consider the following Rössler system:

\[
\begin{align*}
\dot{x}_1 &= -x_2 - x_3 \\
\dot{x}_2 &= x_1 + \lambda x_2 \\
\dot{x}_3 &= 2 + (x_1 - 4) x_3 \\
y &= x_3
\end{align*}
\]

(10)

where we assume that \(\lambda \) is a mainly slowly time-varying message satisfying \(0.3 < \lambda(t) < 0.5 \) \((\forall t)\) and \(x_3(0) > 0 \). It is known (see, e.g., [23]) that for (10) the \((x_1, x_2)\) subsystem does not synchronize with the system

\[
\begin{align*}
\dot{x}_1 &= -\dot{x}_2 - x_3 \\
\dot{x}_2 &= x_1 + \lambda \dot{x}_2
\end{align*}
\]

Thus, in this case no synchronizing subsystem that can be used in a reconstruction mechanism inspired by the scheme in [5] exists. However, it is possible to reconstruct \(\lambda \) based on the measurement \(y \). A first step in this reconstruction is the observation that \(0 \leq \lambda \leq 0.5 \) \((\forall t, \forall \lambda)\). Thus, for (10) the coordinate change \(\xi_1 = x_1, \xi_2 = x_2, \eta = \xi_3 = \log x_3 \) is well-defined. In these new coordinates, (10) takes the form

\[
\begin{align*}
\dot{\xi}_1 &= 0 -1 0 \\
\dot{\xi}_2 &= 1 \lambda 0 \\
\dot{\xi}_3 &= 1 0 0
\end{align*}
\]

\[
A(\lambda) \xi + B(\eta)
\]

\(\eta = \xi_3. \)

(11)

Hence, (11) consists of a linear system \(\xi = A(\lambda) \xi + B(\eta) \), where the matrix \(A(\lambda) \) depends linearly on \(\lambda \), interconnected with a static nonlinearity \(\eta = \Phi(\eta) \) that only depends on (a function of) the transmitted signal \(x_3 \). This means that also in this case linear parameter identification methods may be used to build a reconstruction mechanism for \(\lambda \).

Having illustrated the fact that linear parameter identification methods may be effective in communication with chaotic systems, we now describe how a so-called equation error identifier may be obtained. We will restrict ourselves to linear time-invariant systems with one output and two inputs that depend on one unknown parameter. The restriction to systems with only one input and the extension to systems with more than two inputs are straightforward. The exposition is based on [28]. For further details, the reader is referred to this reference.

In the rest of the paper, we use the following notation and terminology. By \(H[s] \), we denote the set of all polynomials in the indeterminate \(s \) with real coefficients. Let \(\alpha \in H[s] \). Then there exists an \(n \in N \) and \(\alpha_0, \ldots, \alpha_n \in R \) such that \(\alpha \) has the form

\[
\alpha(s) = \sum_{j=0}^{n} \alpha_j s^j.
\]

(12)

If \(\alpha_n \neq 0 \), we define \(\deg(\alpha) := n \). The polynomial \(\alpha \) is called monic if \(\alpha_n = 1 \). Furthermore, \(\alpha \) is called Hurwitz if all zeros of \(\alpha \) are in the open left-half plane of the complex plane. For a function \(f(t) \) that is \(k \) times continuously differentiable, we define

\[
f^{(k)}(t) := \frac{d^k f}{dt^k}(t).
\]

Note that this gives that \(f^{(0)}(t) = f(t) \). Let \(\alpha \in H[s] \) of the form (12) be given, and let \(f(t) \) be \(n \) times continuously differentiable. We then define

\[
a(t) = \sum_{j=0}^{n} \alpha_j f^{(j)}(t).
\]

We now consider a linear time-invariant system \(\Sigma_\lambda \) depending on an unknown parameter \(\lambda \) with two inputs and one output and transfer matrix

\[
G_\lambda(s) = \begin{pmatrix} p_\lambda(s) \\ q_\lambda(s) \end{pmatrix} = \begin{pmatrix} r_\lambda(s) \\ q_\lambda(s) \end{pmatrix}
\]

(13)

As is well known (see, e.g., [26]), the fact that the transfer matrix of \(\Sigma_\lambda \) is given by (13) implies that, given input functions \(u_1(t), u_2(t) \), the output \(y(t) \) of \(\Sigma_\lambda \) satisfies the following linear differential equation:

\[
y \left(\frac{d}{dt} \right) = p_\lambda \left(\frac{d}{dt} \right) u_1 + r_\lambda \left(\frac{d}{dt} \right) u_2.
\]

(14)

We make the following assumptions.

- The polynomials \(p_\lambda(s), q_\lambda(s), r_\lambda(s) \) depend linearly on \(\lambda \).
- For all \(\lambda \), we have that \(\deg(p_\lambda) = n \) and \(q_\lambda \) is monic.
- For all \(\lambda \), we have that \(\deg(q_\lambda), \deg(r_\lambda) < n \).

As a consequence of these assumptions, the polynomials \(p_\lambda, q_\lambda, r_\lambda \) have the following form:

\[
\begin{align*}
p_\lambda(s) &= p_0(s) + p_1(s) \lambda \\
q_\lambda(s) &= q_0(s) + q_1(s) \lambda \\
r_\lambda(s) &= r_0(s) + r_1(s) \lambda
\end{align*}
\]

(15)

where \(p_0, p_1, r_0, r_1, q_0, q_1 \in H[s] \) have the form

\[
\begin{align*}
p_0(s) &= \sum_{j=0}^{n-1} p_{ij} s^j \quad (i = 0, 1) \\
r_0(s) &= \sum_{j=0}^{n-1} r_{ij} s^j \quad (i = 0, 1) \\
q_0(s) &= \sum_{j=0}^{n-1} q_{ij} s^j + s^n \\
q_1(s) &= \sum_{j=0}^{n-1} q_{ij} s^j.
\end{align*}
\]

(16)

In system identification, the task is now to build an estimator for \(\lambda \) based on the measurements \(y, u_1, u_2 \). Note that in our description of \(\Sigma_\lambda \) with the transfer matrix \(G_\lambda(s) \) we have a description that depends on \(\lambda \) in a nonlinear way, in spite of the fact that the polynomials \(p_\lambda, q_\lambda, r_\lambda \) depend on \(\lambda \) in a linear way. In
the equation error method, a first step in building a reconstruction mechanism for \(\lambda \) is to obtain a (asymptotic) description of \(\Sigma_\lambda \) that depends on \(\lambda \) in a linear way. This is achieved as follows. Let \(u_1(t) \) and \(u_2(t) \) be input signals for \(\Sigma \), and let \(y(t) \) be a corresponding output signal of \(\Sigma \). Thus, \(y(t) \) satisfies the differential equation (14). Let \(k \in \mathbb{R}[s] \) be a monic and Hurwitz polynomial with \(\deg(k) = n \). Further, let \(\tilde{y}(t) \) be a signal satisfying the differential equation

\[
\begin{align*}
 k \left(\frac{d}{dt} \right) \tilde{y} &= p_\lambda \left(\frac{d}{dt} \right) u_1 + q_\lambda \left(\frac{d}{dt} \right) u_2 \\
 &\quad + \left[k \left(\frac{d}{dt} \right) - q_\lambda \left(\frac{d}{dt} \right) \right] y.
\end{align*}
\]

(17)

From the above, it follows that \(\tilde{y} \) may be interpreted as the output of a linear time-invariant systems with inputs \(y, u_1, u_2 \) and transfer matrix

\[
H_\lambda(s) = \begin{pmatrix} k(s) - q_\lambda(s) & p_\lambda(s) & r_\lambda(s) \\ k(s) & k(s) & k(s) \end{pmatrix}.
\]

(18)

Writing

\[
k(s) = \sum_{j=0}^{n-1} k_j s^j + s^n
\]

and defining the row vectors

\[
p_i^* := (p_{i0} \ldots p_{i,n-1}) \quad (i = 0, 1) \\
p^* := p_0^* + p_1^* \lambda \\
q_i^* := (q_{i0} \ldots q_{i,n-1}) \quad (i = 0, 1) \\
q^* := q_0^* + q_1^* \lambda \\
r_i^* := (r_{i0} \ldots r_{i,n-1}) \quad (i = 0, 1) \\
r^* := r_0^* + r_1^* \lambda \\
k^* := (k_0 \ldots k_{n-1})
\]

(19)

a realization ([25]) of \(H_\lambda(s) \) is then given by

\[
\begin{align*}
\dot{\tilde{u}}_0 &= K \tilde{w}_0 + L \tilde{y} \\
\dot{\tilde{u}}_1 &= K \tilde{w}_1 + L \tilde{u}_1 \\
\tilde{y} &= (k^* - q^*) \tilde{u}_0 + p^* \tilde{u}_1 + r^* \tilde{u}_2 \\
\end{align*}
\]

(20)

where

\[
K := \begin{pmatrix} 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \\
-k_0 & -k_1 & \cdots & -k_{n-1} \end{pmatrix}
\]

and \(L := \text{col}(0, 0, \ldots, 0, 1) \).

Now note that from (14), (17) it follows that \(\tilde{y} \) in fact satisfies the following differential equation:

\[
k \left(\frac{d}{dt} \right) (\tilde{y} - y) = 0.
\]

(21)

Since \(k \) is Hurwitz, this implies that we have

\[
\lim_{t \to \infty} (\tilde{y}(t) - y(t)) = 0
\]

(22)

where the convergence is exponential. From this fact and the fact that \(H_\lambda(s) \) depends on \(\lambda \) in a linear way, we see that we now have indeed obtained an asymptotic description of \(\Sigma_\lambda \) that depends on \(\lambda \) in a linear way.

A next step in the procedure to obtain an equation error estimator for \(\lambda \) is to consider a copy of the system (20), where \(\lambda \) is replaced by its estimation \(\hat{\lambda} \). Thus, we obtain a system

\[
\begin{align*}
\dot{\tilde{u}}_0 &= K \tilde{w}_0 + \gamma \tilde{y} \\
\dot{\tilde{u}}_1 &= K \tilde{w}_1 + L \tilde{u}_1 \\
\tilde{y} &= (k^* - q^*) \tilde{u}_0 + (p_0^* + p_1^* \hat{\lambda}) \tilde{u}_1 + (r_0^* + r_1^* \hat{\lambda}) \tilde{u}_2
\end{align*}
\]

(23)

Making use of (20), (22), (23), it is then straightforwardly shown that

\[
\tilde{y}(t) - y(t) = \phi(w(t))(\hat{\lambda}(t) - \lambda) + \epsilon(t)
\]

(24)

where \(\epsilon(t) \) tends to zero exponentially for \(t \to +\infty \) and \(\phi(w) \) is defined by

\[
\phi(w) := -\gamma \tilde{u}_0 + p_1^* \tilde{u}_1 + r_1^* \tilde{u}_2.
\]

(25)

To (23), an update mechanism for \(\hat{\lambda} \) of the following form is added:

\[
\dot{\hat{\lambda}} = -\nu \psi(t, w)(\dot{\tilde{y}} - y), \quad \nu > 0.
\]

(26)

Using (24), it is then easily shown that we have

\[
\frac{d}{dt}(\hat{\lambda} - \lambda)^2 = -2\nu \psi(t, w)\phi(w)(\hat{\lambda} - \lambda)^2
\]

(27)

Exploiting the fact that \(\epsilon(t) \) tends to zero exponentially, it may then be shown (see [27] for details) that \(\lambda(t) \to \lambda \) \((t \to +\infty)\) exponentially, if the following conditions are satisfied:

- \(\psi(t, w(t)) \) is bounded on \([0, \infty)\);
- \(\psi(t, w(t)) \phi(w(t)) \geq 0 \) on \([0, \infty)\);
- \(\psi(t, w(t)) \phi(w(t)) \) is persistently exciting (P.E.) on \([0, \infty)\), i.e., there exist \(\alpha_1, \alpha_2, \delta > 0 \) such that for all \(t \in [0, \infty) \) we have

\[
\alpha_1 \leq \int_{t}^{t+\delta} \psi(\tau, w(\tau))^2 \phi(w(\tau))^2 d\tau \leq \alpha_2.
\]

(28)

In the literature, a wide range of possible choices of the function \(\psi(t, w) \) is available. It goes without saying that each different choice of \(\psi \) will lead to a different estimator with different properties. An estimator that possesses good properties in many cases is the least squares estimator with exponential forgetting factor that is obtained by choosing

\[
\psi(t, w) := -\nu \phi(w)p(t), \quad \nu > 0
\]

(29)

where the function \(p(t) \) satisfies the differential equation

\[
\dot{p} = -\gamma(\phi(w)^2 p^2 - \gamma p), \quad \gamma > 0, \quad p(0) > 0.
\]

(30)

In the sequel, we will tacitly assume that the signals \(\psi(t, w(t)) \phi(w(t)) \) appearing in our reconstruction mechanisms are P.E. To a degree, this tacit assumption is justified by the fact that it has been shown in [2] that for quite a wide choice of functions \(\psi(t, w) \) we will have that \(\psi(t, w(t)) \phi(w(t)) \) is P.E.
when the signals $y(t), u_0(t), u_2(t)$ have a power spectrum that is not concentrated at too few a number of peaks. Since in the applications we will be looking at the signals $y(t), u_0(t), u_2(t)$ will be produced by a chaotic system, it follows from the fact that chaotic systems produce signals with a broad continuous power spectrum (cf. [21]), that indeed $\psi(t, u(t))\phi(u(t))$ may be expected to be P.E.

III. THE CORRON-HAHN SCHEME WITH SYNCHRONIZATION

We continue with Example 1. The transfer matrix $G_\lambda(s)$ of the system (5) is given by

$$ G_\lambda(s) = \left(\frac{1}{s} \quad \frac{\lambda}{s} \right). $$

Thus, we have in the notation of the previous section

$$ p_\lambda(s) = 1 \quad q_\lambda(s) = s \quad r_\lambda(s) = \lambda. $$

Letting $\kappa > 0$ we have that the polynomial $k(s) := s + \kappa$ is Hurwitz. Thus, in this case the system (20) has the form

$$ \begin{cases} \dot{u}_0 = -\kappa u_0 + y \\ \dot{u}_1 = -\kappa u_1 + u_2 = -\kappa u_2 + f_1(y, \hat{x}_2, \hat{x}_3) \\ \dot{u}_2 = -\kappa u_2 + u_2 = -\kappa u_2 + g(y, \hat{x}_2, \hat{x}_3) \\ \hat{y} = \kappa u_0 + u_1 + \hat{x}_2 \end{cases}. $$

Furthermore, we have in this case that

$$ \phi(w) = u_2. $$

Choosing

$$ \psi(t, u) = \frac{\text{sign}(u_2)}{1 + |u_2|} $$

we then obtain the following adaptation law for $\hat{\lambda}$:

$$ \hat{\lambda} = -\nu \frac{\text{sign}(u_2)}{1 + |u_2|} (\hat{y} - y), \quad \nu > 0. $$

Remark 1: The reconstruction mechanism (31), (34) is not exactly the same as the reconstruction mechanism proposed in [5]. However, if one looks at (31), (33) more closely, one sees that for the reconstruction one does not need to know u_0 and u_1 separately, but that knowledge of the linear combination $\kappa u_0 + u_1$ suffices. Thus, defining

$$ u_0 := \kappa u_0 + u_1 \quad \tilde{u}_1 := u_2 $$

one arrives at the following reconstruction mechanism:

$$ \begin{cases} \tilde{\dot{u}}_0 = -\kappa \tilde{u}_0 + \kappa y + f_1(y, \hat{x}_2, \hat{x}_3) \\ \tilde{\dot{u}}_1 = -\kappa \tilde{u}_1 + g(y, \hat{x}_2, \hat{x}_3) \\ \hat{\lambda} = -\nu \frac{\text{sign}(\tilde{u}_2)}{1 + |\tilde{u}_2|} (\hat{y} - y), \quad \nu > 0 \end{cases} $$

which is exactly the reconstruction mechanism proposed in [5]. Note, however, that in [5] this reconstruction mechanism was obtained in a different way. Further, in [5] the authors do not require the function $\psi(t, u(t))\phi(u(t))$ to be persistently exciting. However, if one carefully checks the derivation in [5], it turns out that also in [5] this requirement is needed.

IV. CHUA'S CIRCUIT WITH PARTIAL SYNCHRONIZATION

In this section, we continue our investigation of the possibility to build a reconstruction scheme for λ for the Chua circuit (7) from Example 2. As we have seen in Example 2, λ may be reconstructed by using linear parameter identification techniques if, besides the transmitted signal $y = \hat{x}_2$, also the signal x_1 is available for measurement.

It is easily checked that the transfer function $G_\lambda(s)$ of (9) is given by

$$ G_\lambda(s) = \frac{s}{s^2 + s + \lambda}. $$

Thus, in the notation of Section II we have in this case

$$ p_\lambda(s) = s \quad q_\lambda(s) = s^2 + s + \lambda. $$

For (9), the least squares estimator with exponential forgetting factor then takes the following form:

$$ \begin{cases} \tilde{\dot{u}}_{01} = u_{02} \\ \tilde{\dot{u}}_{02} = -k_0 \tilde{u}_{01} - k_1 u_{02} + y \\ \tilde{\dot{u}}_{11} = u_{12} \\ \tilde{\dot{u}}_{12} = -k_0 \tilde{u}_{11} - k_1 u_{12} + u_m \end{cases} $$

$$ \hat{x}_1 = \nu \tilde{u}_{01} (\hat{y} - y), \quad (\nu > 0) $$

$$ \hat{p} = -\nu (\hat{x}_1^2 + \gamma p), \quad (\gamma > 0) $$

where $k_0, k_1 \in \mathbb{R}$ are such that the polynomial $k(s) := s^2 + k_1 s + k_0$ is Hurwitz.

From the above, it follows that if x_1 could be measured, the reconstruction of λ could be achieved by employing the scheme (36). To achieve reconstruction when x_1 cannot be measured, we add the following estimator of x_1 to our reconstruction scheme:

$$ \hat{x}_1 = \lambda \left(\hat{x}_1 + x_2 - \phi(\hat{x}_1) \right) $$

and let the reconstruction scheme (36) depend on \hat{x}_1 instead of x_1, i.e., we replace the reconstruction scheme (36) by the following reconstruction scheme:

$$ \begin{cases} \tilde{\dot{u}}_{01} = \tilde{u}_{02} \\ \tilde{\dot{u}}_{02} = -k_0 \tilde{u}_{01} - k_1 \tilde{u}_{02} + y \\ \tilde{\dot{u}}_{11} = \tilde{u}_{12} \\ \tilde{\dot{u}}_{12} = -k_0 \tilde{u}_{11} - k_1 \tilde{u}_{12} + u_m \end{cases} $$

$$ \hat{x}_1 = \nu \tilde{u}_{01} (\hat{y} - y), \quad (\nu > 0) $$

$$ \hat{p} = -\nu (\hat{x}_1^2 + \gamma p), \quad (\gamma > 0) $$

where now $\hat{\lambda}$ denotes the estimate of λ. We then have the following result that is proved in [32].
Theorem 1: Assume that for (36) we have that
\[\lim_{t \to +\infty} (\hat{x}(t) - \lambda) = 0 \] (39)
and that
\[\lim_{t \to +\infty} (\hat{x}_1(t) - x_1(t)) = 0. \] (40)
Then for (38) we have that
\[\lim_{t \to +\infty} (\hat{x}(t) - \lambda) = 0. \] (41)

From Theorem 1, it follows that if only the transmitted signal \(u = x_2 \) can be measured, then \(\lambda \) can be reconstructed, provided \(\hat{x}_1(t) \) approaches \(x_1(t) \). In [4], it was shown experimentally that this will indeed be the case for constant \(\lambda \). However, one needs to be somewhat careful here for the following reasons. Define the error signal \(e(t) = \hat{x}_1(t) - x_1(t) \). Then, for the parameter values given above, \(e \) satisfies the following differential equation:
\[\dot{e} = 15.6 \left(-\frac{2}{7} e + \frac{3}{7} (\text{sat}(e + x_1) - \text{sat}(x_1)) \right) \] (42)
where \(\text{sat}(\cdot) \) is the saturation function given by \(\text{sat}(x) = (1/2)(|x + 1| - |x - 1|) \). A first observation is that the equilibrium \(e = 0 \) of (42) is unstable when \(x_1(t) \equiv 0 \). This implies in particular that when (7) is initialized in the origin, we will not have that \(e \) tends to zero. It may be argued that from a practical point of view this is not a serious objection since, in practice, one will have (7) running when communicating. However, the system (7) for the given parameter values is chaotic in the sense of Shil’nikov, as was shown in, e.g., [3]. This implies in particular that the origin is a homoclinic point for (7), which gives by the above that \(e \) will also not tend to zero when (7) is initialized on the homoclinic orbit. Further, this implies that when (7) is initialized near the homoclinic orbit, we will at least not have that \(e \) will tend to zero quickly. This leads to the conclusion that the best one could hope for is that \(e \) will tend to zero quickly for a generic choice of \(x_1 \).

Theoretical evidence for the asymptotic stability of \(e = 0 \) for (42) with a generic choice of \(x_1 \) is obtained in the following way. Consider in the \((x_1, e)\)-plane the compact set \(S \) enclosed by the straight lines \(e = -(3/2)(x_1 + 1), e = -(3/2)(x_1 - 1), e = \pm 3 \) (see Fig. 1). Further, consider the function \(V(e) = (1/2)e^2 \). It may then be shown that \(\dot{V} < 0 \) on \(S \cup \{x_1 = \pm 3\} \), while \(\dot{V} > 0 \) outside \(S \cup \{x_1 = \pm 3\} \). A first conclusion that may be drawn from this is that \(\{ e \in \mathbb{R} : |e| \leq 3 \} \) is a globally attracting invariant set of (42) for all \(x_1 \). Also, the location of \(S \) in the \((x_1, e)\)-plane suggests that we will have asymptotic stability of \(e = 0 \) for (42) if the residence time of \(x_1(t) \) in the region \(\{ |x_2| > 1 \} \) is large in comparison with the residence time of \(x_1(t) \) in the region \(\{ |x_2| < 1 \} \). Simulations for constant values of \(\lambda \) between 23 and 31 indicate that (asymptotically) we will have that \(|x_2(t)| \leq 1 \) for about 20% of the time, while \(x_1(t) > -1 \) respectively \(x_1(t) < -1 \) for about 40% of the time.

In Fig. 2 the proposed reconstruction scheme is illustrated by means of a simulation. Here, the parameters were chosen as \(k_0 = 256, k_1 = 32, \nu = 800, \gamma = 0.001 \).
V. RÖSSLER SYSTEM WITHOUT SYNCHRONIZATION

In this section, we continue our investigation of the possibility to build a reconstruction scheme for the Rössler system (10) from Example 3. As we have seen in Example 3, \(\lambda \) may be reconstructed by applying linear parameter identification techniques to the transformed system (11).

It is easily checked that the transfer matrix \(G_\lambda(s) \) of (11) is given by

\[
\left(\frac{s - \lambda}{s^3 - \lambda s^2 + s} \frac{s^2 - \lambda s + 1}{s^3 - \lambda s^2 + s} \right)
\]

Thus, in the notation of Section II we have

\[
\begin{align*}
p_\lambda(s) & := s - \lambda \\ q_\lambda(s) & := s^3 - \lambda s^2 + s \\ r_\lambda(s) & := s^2 - \lambda s + 1.
\end{align*}
\]

The least squares estimator with exponential forgetting factor for (11) then takes the following form:

\[
\begin{align*}
\dot{w}_i & = Kw_i + Lu_i, \quad (i = 0, 1, 2) \\
\dot{y} & = \phi(y) + \lambda \psi_1(w) \\
\dot{\lambda} & = -\nu \psi_2(w)(y - y), \quad (\nu > 0) \\
\dot{\psi} & = -\nu \phi_2(w)^2 \psi - \gamma \psi, \quad (\gamma > 0)
\end{align*}
\]

where \(u_0 := \log(x_3), u_1 := -x_3, u_2 := (2/x_3) - 4 \),

\[
K = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k_0 & -k_1 & -k_2 \end{pmatrix}, \quad L = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]

\(k_0, k_1, k_2 \in \mathbb{R} \) are such that the polynomial \(s^3 + k_2 s^2 + k_1 s + k_0 \) is Hurwitz and \(\phi(y) := k_0 u_0 + (k_1 - 1) u_1 + k_2 u_2 + w_1 + w_2 + \psi_2(w) \).

In Fig. 3, the proposed reconstruction scheme is illustrated by means of a simulation. Here, the parameters were chosen as \(k_0 = 512, k_1 = 192, k_2 = 24, \nu = 0.001, \gamma = 0.002 \).

It may further be shown that, as in Section III, the scheme (43) will exhibit partial synchronization once \(\lambda \) has been estimated correctly.

VI. CLASSES OF TRANSMITTERS AMENABLE TO IDENTIFICATION BASED RECONSTRUCTION SCHEMES

In this section, we briefly indicate two classes of transmitters to which identification based reconstruction schemes may be applied. Further, it is shown that the transmitters treated in the previous sections fit in one of these classes.

A. Partially Linearizable Transmitters

A partially linear transmitter is a transmitter of the form

\[
\begin{align*}
\dot{x}^1 & = A(\lambda) x^1 + B(\lambda) y \\
\dot{x}^2 & = f^2(y, x^2) \\
y & = C(\lambda) x^1
\end{align*}
\]

where \(x^1, x^2 \in \mathbb{R}^{m_1}, x^2 \in \mathbb{R}^{m_2}, \lambda : \mathbb{R} \to \mathbb{R}^{m_1}, f^2 : \mathbb{R} \times \mathbb{R}^{m_2} \to \mathbb{R}^{m_3}, f^1 : \mathbb{R} \times \mathbb{R}^{m_3} \to \mathbb{R}^{m_3}, \) and \(A(\lambda), B(\lambda), C(\lambda) \) are matrices of appropriate dimensions that linearly depend on \(\lambda \). For \(\Sigma_T \), we assume the following.

(A1) \(\chi(y, x^2) \) subsystem synchronizes with a copy of itself, i.e., the dynamics

\[
\dot{z}^2 = f^2(y, \hat{x}^2)
\]

satisfy

\[
\lim_{t \to \infty} \|z^2(t) - x^2(t)\| = 0
\]

whatever the initial conditions of (44) and (45) are.

(A2) The signals \(\chi(y(t), x^2(t)) \) are persistently exciting. If (A1) and (A2) are satisfied, a reconstruction mechanism for \(\lambda \) may be obtained by applying standard linear identification techniques to the system

\[
\begin{align*}
\dot{z} & = A(\lambda) z + B(\lambda) u \\
y & = C(\lambda) z
\end{align*}
\]

where \(u := \chi(y, x^2) \).

Note that the transmitter (2) is a partially linear transmitter with \(x^1 := x_1, x^2 := \text{col}(x_2, x_3) \) and

\[
A(\lambda) := 0, \quad B(\lambda) := (1, \lambda), \quad C(\lambda) := (1)
\]

and

\[
\chi(y, x^2) := \begin{pmatrix} f_1(y, x^2) \\ f_2(y, x^2) \end{pmatrix}, \quad f^2(y, x^2) := \begin{pmatrix} f_3(y, x^2) \\ f_4(y, x^2) \end{pmatrix}
\]

Furthermore, note that also the transmitter (7) is a partially linear transmitter with \(x^1 := \text{col}(x_2, x_3), x^2 := x_1 \)

\[
A(\lambda) := \begin{pmatrix} -1 & 1 \\ -\lambda & 0 \end{pmatrix}, \quad B(\lambda) := \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad C(\lambda) := (1, 0)
\]
and
\[\chi(y, x^2) := x_1, \quad f^2(y, x^2) := \alpha(-x^2 + y - \phi(x^2)). \]

Next, consider a transmitter \(\Sigma_T \) of the form
\[\Sigma_T \left\{ \begin{array}{c}
\dot{\xi} = \dot{f}(\xi, \mu) \\
\dot{y} = h(\xi)
\end{array} \right\} \quad (48) \]
where \(\xi \in \mathbb{R}^m, \mu \) is a mainly slowly time-varying message, and \(\dot{y} \in \mathbb{R} \). This transmitter is called partly linearizable if there exist new coordinates \(z(\xi) = \alpha(x^1(\xi), x^2(\xi)) \) with \(x^1 \in \mathbb{R}^l, x^2 \in \mathbb{R}^{n-l} \) and invertible mappings \(\phi, \psi : \mathbb{R}^l \rightarrow \mathbb{R}^l \) such that in the new coordinates \(x \) and with \(y := \phi(\dot{y}), \lambda := \psi(\mu) \), the transmitter \(\Sigma_T \) takes the form (44). It then follows from the discussion above that also for a partly linearizable transmitter identification based reconstruction schemes may be designed.

To the best of our knowledge, there are no results in the literature that give conditions under which a given transmitter is partly linearizable. The derivation of such conditions remains a topic for further research. It is to be expected that in this derivation results developed in [16] and [9] will be useful.

B. Linearizable Error Dynamics

Linearizable error dynamics are dynamics of the form ([20], [11])
\[\left\{ \begin{array}{c}
\dot{\xi} = A(\lambda)\xi + B(\lambda)\Phi(\dot{y}) \\
\dot{y} = C(\lambda)z
\end{array} \right\} \quad (49) \]
where \(\xi \in \mathbb{R}^m, \dot{y} \in \mathbb{R}, \Phi : \mathbb{R} \rightarrow \mathbb{R}^m, A(\lambda), B(\lambda), C(\lambda) \) are matrices of appropriate dimensions that linearly depend on \(\lambda \), and \((C(\lambda), A(\lambda)) \) is observable (cf. [26]) for all \(\lambda \). Note that (11) are linearizable error dynamics. If the signals \(\Phi(\dot{y}(t)) \) are persistently exciting, a reconstruction mechanism for \(\lambda \) may be obtained by applying standard linear identification techniques to the system
\[\left\{ \begin{array}{c}
\dot{z} = A(\lambda)z + B(\lambda)u \\
\dot{y} = C(\lambda)z
\end{array} \right\} \quad (50) \]
where \(u := \Phi(\dot{y}) \).

Next, consider a transmitter \(\Sigma_T \) of the form
\[\left\{ \begin{array}{c}
\dot{x} = f(x, \mu) \\
\dot{y} = h(x)
\end{array} \right\} \quad (51) \]
where \(x \in \mathbb{R}^n, \mu \) is a mainly slowly time-varying message, and \(y \in \mathbb{R} \). This transmitter is said to admit linearizable error dynamics if there exist new coordinates \(\xi(x) \) and invertible mappings \(\phi, \psi : \mathbb{R} \rightarrow \mathbb{R} \) such that in the new coordinates \(\xi \) and with \(\dot{y} := \phi(\dot{y}), \lambda := \psi(\mu) \), the transmitter \(\Sigma_T \) takes the form (49). It then follow from the discussion above that also for a transmitter that admits linearizable error dynamics, identification based reconstruction schemes may be designed.

For transmitters of the form (51) without parameter dependence [14] (see also [15]) gives conditions under which the transmitter admits linearizable error dynamics. To the best of our knowledge, no conditions are known under which a parameter-dependent transmitter (51) admits linearizable error dynamics. The derivation of such conditions remains a topic for further research.

VII. CONCLUSIONS AND DISCUSSION

We have studied communication with chaotic systems using ideas from systems and control theory. Since, in general, the unknown message which is to be reconstructed is not available beforehand, insistence on standard synchronization schemes restricts the class of systems that may be employed in designing a viable communication scheme. We therefore propose an adaptive identification scheme that would enable the message reconstruction without explicitly assuming (partial) synchronization. This method forms a generalization of a method developed in [5] and is applicable in a far more general setting than in [5]. It should be noted that the message to be reconstructed has to be mainly slowly time varying, so that the identification scheme is fast enough for the reconstruction. Typically, in communication this will be the case, in particular when dealing with piecewise constant (binary) messages. Two illustrative simulations of the proposed identification schemes are included, together with a discussion of the validity of the imposed conditions. Furthermore, classes of transmitters that are amenable to identification based reconstruction schemes have been identified.

A possible advantage of using chaotic systems for communication is that the transmitted signal \(y \) will be a chaotic signal, which implies that it has a broad spectrum. This gives the opportunity to use the chaotic system under consideration for wideband communication (cf. [13]). Furthermore, the fact that the transmitted signal is a chaotic (and thus seemingly random) signal gives the hope that chaotic systems may also be used for private communication. In this respect, the following comparison between the three examples in this paper is in order. As already indicated in Section II, in Example 1 the distance between the message \(\lambda \) and the transmitted signal \(y \) is small in the sense that the relative degree (cf. [11]) of \(y \) with respect to \(\lambda \) equals 1. This might be a drawback if one would like to use the scheme in Example 1 for private communication since it might mean that \(\lambda \) is not hidden well enough. Indeed, a simple numerical differentiation scheme could be enough to allow eavesdroppers to decode the coded message. Therefore, from the point of view of private communication, it might be worthwhile to consider schemes where the relative degree of \(y \) with respect to \(\lambda \) is greater. The schemes considered in Examples 2 and 3 indeed satisfy this property. In Example 2 the relative degree equals two, while in Example 3 the relative degree equals three. Of course, further research as to whether indeed a higher relative degree will enhance the privacy of communication schemes based on chaotic systems is needed. Here, one could investigate to what extent the proposed schemes withstand code breaking mechanisms as described, in e.g., [24], [29], and [30].

As in [5], we have studied communication with chaotic systems in an ideal setting in the sense that our examples are simulation examples where we did not include practical limitations in communications like amplitude attenuation, bandwidth limitations, phase distortion, and channel noise (cf. [27]). All these may effect, to some extent, the idealized outcomes shown in the given simulations. These are topics that are being studied at the moment. Preliminary investigations indicate that for piece-
wise constant messages, sufficiently small channel noise can be cope
d with, possibly after having added a filter as described in,
e.g., [6], [7], and [31] to the reconstruction mechanism.

REFERENCES

Henri Huijberts (M’00) was born in Schagen, The Netherlands, on December 15, 1962. He received the M.Sc. and Ph.D. degrees from the University of Twente, Enschede, The Netherlands in 1987 and 1991, respectively.

From 1991 until September 1999 he was with the Department of Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven, The Netherlands. Since then, he has been with the Department of Engineering, Queen Mary and Westfield College, London, U.K. His research interests include nonlinear control, dynamical systems, chaos, and synchronization.

Dr. Huijberts is on the Editorial Board of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL and the SIAM Journal on Control and Optimization.

Henk Nijmeijer (M’83, SM’91, F’00) was born in Assen, the Netherlands, on March 16, 1955. He received the M.Sc. and Ph.D. degrees from the University of Groningen, Groningen, the Netherlands, in 1979 and 1983, respectively.

From 1983 to April 2000 he was with the Faculty of Mathematical Sciences, University of Twente, Enschede, the Netherlands. Since May 2000 he has been a Professor at the Faculty of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands. His research interests include nonlinear control and its applications, dynamical systems, chaos, and synchronization.

Dr. Nijmeijer is on the Editorial Board of various journals, including Automatica, the SIAM Journal on Control and Optimization, the International Journal of Robust and Nonlinear Control and the International Journal of Control.

Rob Willems was born in Geleen, The Netherlands, on November 30, 1969. He received the M.Sc. degree in applied mathematics from Eindhoven University of Technology, Eindhoven, The Netherlands in 1998. He is presently with Statistics Netherlands where he works on cleansing of large data sets infected with incorrect and missing data.