Anomalous exciton lifetime by electromagnetic coupling of self-assembled InAs/GaAs quantum dots

E. W. Bogaartb and J. E. M. Haverkort
Department of Applied Physics, COBRA Inter-University Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 1 November 2009; accepted 2 February 2010; published online 29 March 2010)

We report on the experimental observation of a hitherto ignored long-range electromagnetic coupling between self-assembled InAs/GaAs quantum dots (QDs). A 12 times enhancement of the QD exciton lifetime is observed by means of time-resolved differential reflection spectroscopy. The enhancement is due to local field effects within the QD ensemble. The electromagnetic coupling of the QDs results in a collective polarizability, and is observed as a suppression of the emission rate. Our results reveal that the mutual coupling strength can be optically tuned by varying the pump excitation density. This enables us to optically tune the exciton lifetime. © 2010 American Institute of Physics. [doi:10.1063/1.3354080]

I. INTRODUCTION

Realization of nanoscaled semiconductor systems, e.g., quantum dots (QDs), has opened up the possibility of investigating the effects of the local electrodynamic environment on the radiative emission of confined excitons. One of the consequences of a modified electromagnetic density-of-states (DOS) is the enhancement or suppression of the spontaneous emission rate. Modification of the local density of electromagnetic states in the vicinity of an emitter can be established by inserting the emitter into a nanocavity 1,2 or by the mutual interaction between closely spaced emitters. The latter can be described by Förster coupling, 3–5 the Dicke-effect, 6,7 or local field effects. 8 The Dicke-effect is observed as an enhancement or suppression of the emission rate—known as superradiance and subradiance, respectively, and is sensitive to the distance between the interacting emitters. In order to observe superradiance or subradiance in solid state nanostructures, the system has to be engineered with high accuracy as established for a high-quality multiple quantum well structure. 9 Unlike quantum wells, self-assembled QD nanostructures have a significant inhomogeneously broadened DOS and a lateral distribution. As a result, pure superrad- and subradiance tend to cancel each other. 7

Experimentally, it is ignored that optical excitation of nanoscale objects, e.g., QDs, quantum rings, and carbon nanotubes, has a profound impact on the permittivity of the nanoscaled object and near its lattice site. For InAs/GaAs QDs this means that due to the Lorenzian-shaped permittivity of optically excited QD $\varepsilon_{\text{QD}}(\omega)$, which is much larger than the permittivity of the GaAs host medium $\varepsilon_{\text{GaAs}}$, the electromagnetic field pattern is strongly modified. Hereby, the radiative decay channels 8,13 of the emitter are affected. Hence, the high contrast permittivity landscape formed by excited QDs provides a strong dipole scattering of electromagnetic fields, 8 such that local electromagnetic fields acting on each QD are modified by the adjacent polarized QDs. In this perspective, a QD ensemble can be described as an array of mutually interacting point sources, the strength of which is given by the self-dressed polarizability.

By plotting the QD-exciton lifetime versus the QD transition energy an anomalous QD-exciton lifetime spectrum is revealed, as depicted in Fig. 1. The lifetime spectrum—deduced from transient differential reflection measurements—has a pronounced resonantlike behavior with respect to the optically excited QD DOS with a 12 times enhancement at the mean transition energy of the QD ground state.

In this paper, we report on a significant modification of the QD-exciton lifetime observed by means of time-resolved differential reflection spectroscopy (TRDR), 14,15 owing to mutual electromagnetic coupling between QD-excitons within the ensemble. 16 The profound modification of the QD-exciton lifetime is a direct consequence of the collective polarizability of the nanostructure. To explain this collective effect, we utilize and significantly extend the electromagnetic response theory as presented by Ref. 8 for a two-dimensional (2D) array of identical QDs. Our extended model describes the effective electromagnetic response of nanostructures, which takes into account the inhomogeneously broadened

![FIG. 1. (Color online) QD-exciton lifetime vs the probe photon energy measured at 300 W/cm² pump excitation, revealing anomalous lifetime resonance for the QD ground and excited state. A PL spectrum obtained at high excitation density is added as a reference, to emphasize the QD first excited state. The inset shows three TRDR signals (normalized) obtained for different probe photon energies.](https://jap.aip.org/jap/doi/10.1063/1.3354080)
DOS as observed for more realistic QD ensembles. The significant lifetime enhancement illustrates a mutual interaction between resonant QD-excitons, which extends over distances considerably beyond the nearest neighbor separation.

II. MODEL

Let a single random inhomogeneous layer of QDs be placed in a homogeneous isotropic host medium. Our model incorporates two factors of the irregularity such as: (i) inhomogeneous broadening of the exciton spectrum and (ii) random distribution of QDs in the layer. As a first step, we assume all QDs to be identical and eliminate thus the inhomogeneous broadening. Then, the effective boundary conditions derived for regular arrays in Ref. 8 are extended to the case of randomly inhomogeneous 2D ensembles of QDs with homogeneous line broadening. In the strong confinement regime, \(^{8}\) the effective permittivity of a QD is written as a Lorentzian function \(\varepsilon_Q(\omega) = \varepsilon_h \left(1 + \frac{\omega_Q}{\omega - \omega_0 + i\Gamma_0} \right)\) with a single resonance frequency (eigenfrequency) \(\omega_0\).

\[\varepsilon_Q(\omega) = \varepsilon_h \left(1 + \frac{\omega_Q}{\omega - \omega_0 + i\Gamma_0} \right).\] \hspace{1cm} (1)

Parameter \(\omega_Q\) is related to the QD oscillator strength \(f_0\) through the spontaneous emission rate \(\Gamma_0\)

\[\omega_Q = \frac{2f_0}{k_0^2 V_QD}, \quad \text{with} \quad \Gamma_0 = \frac{e^2}{6\varepsilon_0\varepsilon_m c^3}.\] \hspace{1cm} (2)

Here \(e\) and \(\varepsilon_m\) denote the elementary charge and the effective charge, respectively. \(\Gamma_0\) governs the homogeneous linewidth of a QD with volume \(V_QD = (4\pi/3)R_QD^3\). The electromagnetic response utilizes the Clausius–Mosotti relation \(^{20,21}\) to calculate the collective polarizability of the ensemble

\[\alpha = R_QD^3 \frac{\varepsilon_Q - \varepsilon_h}{\varepsilon_Q + 2\varepsilon_h}.\] \hspace{1cm} (3)

Further analysis is based on general principles of the wave propagation in randomly inhomogeneous media.

The resulting local field effects are visualized by the optical response functions. We use the reflection coefficient—for s-polarization—of a planar periodic array of identical QDs to determine the collective radiative decay rate. In analogy with Ref. 22, the plane wave QD reflection coefficient \(r_{QD}\) is obtained by solving the jump boundary conditions \(^{22,23}\) on the field components, such that

\[r_{QD}(\omega) = \frac{i\Lambda}{\sqrt{\varepsilon_h} - i\Lambda}, \quad \text{with} \quad \Lambda = \frac{2\pi\varepsilon_0\varepsilon_h\alpha}{c^2d_{QD}^2}.\] \hspace{1cm} (4)

Note that, the reflection of the QD ensemble depends on the 2D periodic lattice spacing \(d_{QD}\). The emission rate of an electromagnetically coupled QD array \(\Gamma_{\text{coupled}}\) at resonance \(\hbar\omega_0\)—is governed by the imaginary part of the frequency pole of the reflection coefficient, \(^{6}\) and can be written as

\[\Gamma_{\text{coupled}} = \Gamma_{\text{isolated}} - \frac{k_0\varepsilon_h\omega_{QD}V_{QD}}{2d_{QD}^2}.\] \hspace{1cm} (5)

Here \(\Gamma_{\text{isolated}}\) is a weighted sum of the dephasing and the radiative emission rate of an isolated QD-exciton, i.e., an uncoupled QD-exciton. \(^{25-29}\) \(k_0\) denotes the vacuum wave vector and \(\omega_{QD}\) is the phenomenological parameter proportional to the QD oscillator strength. \(^{8}\) Equation (5) shows that the lifetime \(1/\Gamma_{\text{coupled}}\) is governed by the lattice spacing \(d_{QD}\).

To apply our theoretical model to self-assembled QD nanostructures, the inhomogeneously broadened DOS and random spatial QD distribution must be introduced in the model. We emphasize, that the electromagnetic coupling manifests itself only between (quasi) resonant QD-excitons and is governed by the spectral overlap of the homogeneously broadened permittivity of the excited QDs, typically described by a Lorenzian profile. Lateral disorder means distortion of the ideal lattice, and is seen as a fluctuation of distances between adjacent sites. Disorder effects of excitons in semiconductor nanostructures can be described within the usual single-site approximation, e.g., the coherent-potential approximation (CPA). \(^{30-32}\) If \(Z\) different scatterers are randomly distributed on the lattice sites of a plane, the CPA can be used to treat the disordered system within a mean-field context. Hereby, the effective CPA medium consists of identical scatterers at all sites of the plane, i.e., an isotropic QD array. By making use of the CPA formulism, the whole QD ensemble with inhomogeneously broadened DOS \(G(\omega)\) can be divided into smaller subensembles, each with their own narrow DOS \(G(\omega_j)\) and unique ordering—a 2D array with periodicity \(d_{QD}(\omega_j)\), where each lattice site is occupied by a QD-exciton with the effective polarizability.

The average distance between the QDs within each subensemble depends on the location of these QDs within the overall DOS, \(1/d_{QD}(\omega_j) = \sqrt{N(\omega_j)} = \sqrt{N_{QD}(\omega_j)}\). Here \(N(\omega_j)\) and \(N_{QD}\) are the area QD density of a subensemble with peak energy \(\hbar\omega_j\) and of the whole ensemble, respectively. Taking this into account for the whole ensemble, Eq. (5) is rewritten as

\[\Gamma_{\text{coupled}}(\omega) = \Gamma_{\text{isolated}} - \frac{k_0\varepsilon_h\omega_{QD}V_{QD}}{2d_{QD}^2} N_{QD} G(\omega).\] \hspace{1cm} (6)

The additional factor two in the second term on the righthand side takes into account the QD spin degeneracy. Equation (6) reveals that the QD-exciton lifetime has a maximum at the center of the QD-size distribution, where the average distance between radiatively coupled QDs within the subensemble has statistically a minimum value. Equation (6) also predicts a resonantlike QD-exciton lifetime spectrum. The lifetime spectrum will have a narrower spectral width—a factor \(\sqrt{2}\) narrower—than the QD distribution \(G(\omega)\), due to the quadratic dependence. This prediction is indeed observed experimentally, as will be shown below.

Besides the imaginary part, the real part of the frequency poles of \(r_{QD}\) determines the depolarization shift, such that we obtain

\[\omega_c = \text{Re}[r_{QD}(\omega - \omega_0)] = \frac{\omega_{QD}}{3}.\] \hspace{1cm} (7)

As is observed from Eq. (7), the shift does not depend on the periodicity of the QD array, but is solely governed by the parameter \(\omega_{QD}\). This means that the oscillator strength of the QD defines the depolarization shift in the ensemble.
III. SAMPLE GROWTH AND EXPERIMENTAL DETAILS

To test the result of the theoretical electromagnetic response model as given by Eq. (6), differential reflection measurements are performed on a five layer self-assembled InAs QD nanostructure grown by molecular beam epitaxy on a (100) GaAs substrate. After the deposition of 295 nm GaAs buffer layer at 580 °C, the temperature was lowered to 490 °C for the growth of the multiple QD layers. A 30 nm GaAs layer was deposited before the growth of the five layers of QDs. Each QD layer consists of 2.1 ML of InAs followed by a 30 nm GaAs spacer layer. Finally, the sample is capped by 137 nm GaAs at a temperature of 580 °C. Atomic force microscopy images of uncovered dots show that the QDs are formed with a density of approximately 2.8 \times 10^{10} \text{ cm}^{-2}.

The QD-exciton lifetime is investigated by means of pump-probe TRDR (Refs. 14, 15, and 33) at 5 K. The QDs are nonresonantly excited using short laser pulses from a mode-locked Ti:sapphire laser. The pump photon energy is tuned above the band gap energy of the GaAs barrier material and creates free carriers within the GaAs host, which are subsequently captured into the QDs. The carrier-induced reflection change \(\Delta R/R_0(\omega) \) is monitored by tuning the photon energy of the probe laser over the QD optical transition energy within the ensemble. These resonant probe pulses are generated from an optical parametric oscillator, synchronously pumped by the Ti:sapphire laser. Both lasers emit 2 ps pulses, corresponding to a spectral resolution of approximately 1 meV. Thus, in the center of the size distribution, only 1.7% of all QDs are in resonance with the probe laser. This small fraction of resonant QDs forms an interactive coupled subensemble, which collectively responds to the electromagnetic probe field. Since the average dot-to-dot distance in our sample is approximately 60 nm, the average separation between resonant dots extends to approximately 460 nm in the center of the size distribution.

IV. RESULTS AND DISCUSSION

Figure 1 depicts the QD-exciton lifetime as a function of the QD transition energy. We note that the QD-exciton lifetime spectrum shows a pronounced resonantlike behavior with respect to the photoluminescence (PL) spectrum. The lifetime spectrum reveals, that the QD-exciton lifetime at the mean transition energy of the QD ground state is 12 times larger than that of the excitons at the wings of the distribution. In other words, Fig. 1 reveals a 12 times enhancement of the QD-exciton lifetime. Moreover, the lifetime spectrum is narrower than the PL spectrum which is in agreement with the predictions as deduced from Eq. (6). Surprisingly, also the lifetime of the QD first excited state at 1.163 eV has an energy dependence. These preliminary observations already provide some qualitative experimental confirmations of our theoretical model. To make a more quantitative statement, additional investigations of the TRDR measurement results must be performed. Analysis of the lifetime spectrum by using Gaussian fits, reveals two peaks that are ascribed to the QD ground and first excited state with peak energies of 1.104 and 1.161 eV, respectively. In addition, the spectral width of the ground (first excited) state is 27 (23) meV. The PL spectrum has a peak energy of 1.107 eV for the ground state and a spectral width of 44 meV. We note that the lifetime spectrum is slightly shifted with respect to the PL spectrum.

At the side of the distribution the QD-exciton lifetime approaches 150 ps. These QDs can be regarded as uncoupled and enable us to determine \(\Gamma_{\text{isolated}} \). Our observation of a 150 ps QD-exciton lifetime is not surprising if we consider that our QDs have a total confinement energy of approximately 168 meV. From the results as reported in Ref. 29, a radiatively limited lifetime of a few hundred picoseconds is expected.

More experimental evidence of electromagnetic coupling between optically excited QDs is provided by the pump excitation density dependence of the QD-exciton lifetime enhancement, as depicted in Fig. 2. From the spectra shown in Figs. 1 and 2, it is clear that the lifetime-spectrum amplitude exhibits a strong dependence on the pump-induced carrier density \(\eta \), but that the shape remains unaffected. The increased pump-induced carrier density induces a higher QD population, resulting in a nonzero change in the QD-exciton emission rate.

\[\Delta \Gamma = \partial \Gamma / \partial \eta \neq 0. \]

Hence, the QD-exciton lifetime is governed by the density of occupied states, \(\Gamma_{\text{occupied}}(\omega) = G^2_{\text{occupied}}(\omega) \). Thus, the number of optically excited QDs determines the effective coupling distance and hereby the coupling strength.

In order to compare our theoretical model with the experimental findings, Figs. 1 and 2, the QD DOS \(G(\omega) \) has to be known. We utilize the differential reflection spectrum obtained by plotting the amplitude of the TRDR time-traces, as depicted in the inset of Fig. 1, versus the probe photon energy. The resultant reflectivity spectrum is depicted in Fig. 3. Two peaks are observed for the QD ground state and for the QD first excited state. Both energy states have a local minimum near the peak of the ground and first excited state transition energy. In other words, for both energy states a splitting is observed in the differential reflection spectrum and appears as a double peak shifted by \(\pm \hbar \omega_c \) with respect to the mean transition energy of each state. From the reflectivity spectrum, we deduce a splitting of \(2 \hbar \omega_c = 27(15) \text{ meV} \) for the QD ground (first excited) state.

The amplitude \(\Delta R(\omega) \) of the differential reflectivity, Fig. 3, is expressed as

\[\Delta R(\omega) \text{ (from Fig. 3)} = 27 \text{ (meV)} \]
G is found to be a factor 1.41 smaller than the 38 meV spectral

tive spectrum

cation, and not with the PL spectrum. From our

duction is experimentally verified. Because long-range interaction mecha-
nisms in which the interaction is not limited to the nearest

cs is observed from transient differential reflectivity mea-

g on a lattice site acting as a

Fig. 3—corresponds to an average distance of \(d_{\text{QD}}^{\text{ex}} = 490 \pm 20 \) nm between the radiatively coupled QD-excitons. We note, that the exciton lifetime at the wings of the distribution are thus governed by an even larger separation

tively interacting QDs. These QDs have a weaker coupling strength and therefore a smaller lifetime

Our observation of a long-range electromagnetic interaction between QD-excitons, implies that photonic lattices formed by QDs (Refs. 34 and 36) are promising systems for the development of future nanophotonic devices such as a quantum processor. Because long-range interaction mechanisms in which the interaction is not limited to the nearest neighbors, are essential for building a scalable quantum computer. We expect that our results will open intriguing perspectives for the emerging fields of quantum logics, in which the photonic lattice can be regarded as a quantum register with each QD-exciton on a lattice site acting as a qubit.

V. SUMMARY

In summary, electromagnetic interaction between distant QDs is observed from transient differential reflectivity measurements. The QD-exciton lifetime is measured as a function of the transition energy and shows a strong resonantlike behavior with respect to the QD DOS. The obtained lifetime spectrum reveals a 12 times lifetime enhancement at the center of the ground state energy distribution, due to the collective effect of electromagnetically coupled QDs.

ACKNOWLEDGMENTS

The authors thank R. Nötzel, G. Ya. Slepyan, and S. A. Maksimenko for fruitful discussions. This work is financially supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM).

8G. Y. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, and D.
12From Ref. 11, an excited QD has a Lorentzian-shaped permittivity with a calculated peak value of $\varepsilon_{\text{QD,peak}} = 10^4$ at resonance.