Schedulability analysis of synchronization protocols based on overrun without payback for hierarchical scheduling frameworks revisited

Reinder J. Bril, Uğur Keskin
Dep. Mathematics and Computer Science
Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
R.J.Bril@TUe.nl

Moris Behnam, Thomas Nolte
Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University
P.O. Box 883, SE-721 23 Västerås, Sweden

Abstract—In this paper, we revisit global as well as local schedulability analysis of synchronization protocols based on the stack resource protocol (SRP) and overrun without payback for hierarchical scheduling frameworks based on fixed-priority pre-emptive scheduling (FPPS). We show that both the existing global and local schedulability analysis are pessimistic, present improved analysis, and illustrate the improvements by means of examples.

I. INTRODUCTION

A. Background

The Hierarchical Scheduling Framework (HSF) has been introduced to support hierarchical CPU sharing among applications under different scheduling services [1]. The HSF can be generally represented as a tree of nodes, where each node represents an application with its own scheduler for scheduling internal workloads (e.g. tasks), and resources are allocated from a parent node to its children nodes.

The HSF provides means for decomposing a complex system into well-defined parts called subsystems, which may share (so-called global) logical resources requiring mutual exclusive access. In essence, the HSF provides a mechanism for timing-predictable composition of course-grained subsystems. In the HSF a subsystem provides an introspective interface that specifies the timing properties of the subsystem precisely. This means that subsystems can be independently developed, analyzed and tested, and later assembled without introducing unwanted temporal interference. Temporal isolation between subsystems is provided through budgets which are allocated to subsystems.

As large extents of embedded systems are resource constrained, a tight analysis is instrumental in a successful deployment of HSF techniques in real applications. We therefore aim at reducing potential pessimism in existing schedulability analysis for HSFs. Looking further at existing industrial real-time systems, fixed priority pre-emptive scheduling (FPPS) is the de facto standard of task scheduling, hence we focus on an HSF with support for FPPS in the scheduling of tasks within a subsystem. Having such support will simplify migration to and integration of existing legacy applications into the HSF, avoiding a too big technology revolution for engineers.

Our current research efforts are directed towards the conception and realization of a two-level HSF that is based on (i) FPPS for both global scheduling of budgets (allocated to subsystems) and local scheduling of tasks (within a subsystem), (ii) the periodic resource model [1] for budgets, and (iii) the Stack Resource Protocol (SRP) [2] for both inter- and intra-subsystem resource sharing. For such an HSF, two mechanisms have been studied that prevent depletion of a budget during global resource access, i.e. skipping [3] and overrun [4]. Skipping prevents depletion by checking the remaining budget before granting resource access, and delaying access to a next budget period when the remaining budget is insufficient. Overrun prevents depletion by temporarily increasing the budget with a statically determined amount for the duration of that access. The overrun mechanism comes in two flavors, i.e. with payback and without payback, which determine whether or not the additional amount of budget has to be payed back during the next budget period.

B. Contributions

We show that existing global and local schedulability analysis of synchronization protocols based on SRP and overrun without payback for two-level hierarchical scheduling based on FPPS is pessimistic. We present improved global and local analysis assuming that the deadline of a subsystem holds for the sum of its normal budget and its overrun budget, and illustrate the improvements by means of examples. We briefly discuss further options for improvements.

C. Overview

This paper has the following structure. In Section II we present related work. A real-time scheduling model is the topic of Section III. The existing global and local schedulability analysis is recapitulated in Section IV, and improved global and local analysis is presented in Sections V and VI, respectively. Options for further improvements are briefly sketched in Section VII. The paper is concluded in Section VIII.
II. RELATED WORK

There has been a growing attention to hierarchical scheduling of real-time systems [5], [6], [7], [8], [1]. Deng and Liu [5] proposed a two-level HSF for open systems, where subsystems may be developed and validated independently. Kuo and Li [7] and Lipari and Baruah [8] presented schedulability analysis techniques for such a two-level framework with the FPPS global scheduler and the Earliest Deadline First (EDF) global scheduler, respectively. Shin and Lee [1] proposed the periodic resource model to specify guaranteed CPU allocations, an explicitly distinguishing a relative deadline Δ posed the explicit deadline periodic (EDP) resource model. We do therefore not consider local logical resources. For notational convenience, we assume that subsystems are given in order of decreasing priorities, i.e. S_1 has highest priority and S_N has lowest priority.

B. Subsystem model

Each subsystem S_s contains a set T_s of n_s periodic tasks $\tau_1, \tau_2, \ldots, \tau_{n_s}$ with fixed, unique priorities, which are scheduled by means of FPPS. For notational convenience, we assume that tasks are given in order of decreasing priorities, i.e. τ_1 has highest priority and τ_{n_s} has lowest priority. The set R_s denotes the subset of M_s global resources accessed by subsystem S_s. The maximum time that a subsystem S_s executes while accessing resource $R_l \in R_s$ is denoted by X_{sl}, where $X_{sl} \in \mathbb{R}^+ \cup \{0\}$ and $X_{sl} > 0 \iff R_l \in R_s$. The timing characteristics of S_s are specified by means of a triple $< P_s, Q_s, X_s >$, where $P_s \in \mathbb{R}^+$ denotes its (budget) period, $Q_s \in \mathbb{R}^+$ its (normal) budget, and X_s the set of maximum execution access times of S_s to global resources. The maximum value in X_s is denoted by X_s.

C. Task model

The timing characteristics of a task $\tau_{sl} \in T_s$ are specified by means of a quartet $< T_{sl}, C_{sl}, D_{sl}, C_{si} >$, where $T_{sl} \in \mathbb{R}^+$ denotes its minimum inter-arrival time, $C_{sl} \in \mathbb{R}^+$ its worst-case computation time, $D_{sl} \in \mathbb{R}^+$ its (relative) deadline, C_{sl} a set of maximum execution times of τ_{sl} to global resources, where $C_{si} \leq D_{sl} \leq T_{sl}$. The maximum time that a task τ_{sl} executes while accessing resource $R_l \in R_s$ is denoted by c_{sll}, where $c_{sll} \in \mathbb{R}^+ \cup \{0\}$, $C_{sl} \geq c_{sl}$, and $c_{sl} > 0 \iff R_l \in R_s$.

D. Resource model

The CPU supply refers to the amount of CPU allocation that a virtual processor can provide. The supply bound function $\text{sbf}_\Omega(t)$ of the EDP resource model $\Omega(\Pi, \Theta, \Delta)$ that computes the minimum possible CPU supply for every interval length t is given by

$$\text{sbf}_\Omega(t) = \begin{cases} t - (k+1)(\Pi - \Theta) + (\Pi - \Delta) & \text{if } t \in V^{(k)} \\ (k-1)\Theta & \text{otherwise,} \end{cases}$$

(1)

where $k = \max \left(\left\lceil \left(t - (\Delta - \Theta) / \Pi \right) \right\rceil, 1 \right)$ and $V^{(k)}$ denotes an interval $[k\Pi + \Delta - 2\Theta, k\Pi + \Delta - \Theta]$. The supply bound function $\text{sbf}_\Gamma(t)$ of the periodic resource model $\Gamma(\Pi, \Theta)$ is a special case of (1), i.e. with $\Delta = \Pi$.

1The focus of this paper is on synchronization protocols for global logical resources. We do therefore not consider local logical resources.

2In [11], it is required that $c_{sl} < C_{sl}$ and $c_{sl} < Q_s$. Moreover, it is observed that c_{sl} will typically be much smaller than both C_{sl} and Q_s.

III. REAL-TIME SCHEDULING MODEL

We consider a two-level hierarchical FPPS model using the periodic resource model to specify guaranteed CPU allocations to tasks of subsystems and using a synchronization protocol for mutual exclusive resource access to global logical resources based on SRP and overrun without payback.

A. System model

A system Sys contains a set R of M global logical resources R_1, R_2, \ldots, R_M, a set S of N subsystems S_1, S_2, \ldots, S_N, a set B of N budgets for which we assume a periodic resource model [1], and a single processor. Each subsystem S_s has a dedicated budget associated to it. In the remainder of this paper, we leave budgets implicit, i.e. the timing characteristics of budgets are taken care of in the description of subsystems. Subsystems are scheduled by means of FPPS and have fixed, unique priorities. For notational convenience, we assume that subsystems are given in order of decreasing priorities, i.e. S_1 has highest priority and S_N has lowest priority.
E. Synchronization protocol

Overrun without payback prevents depletion of a budget of a subsystem S_i during access to a global resource R_l by temporarily increasing the budget of S_i with X_{sl}, the maximum time that S_i executes while accessing R_l. To be able to use SRP in an HSF for synchronizing global resources, its associated ceiling terms need to be extended.

1) Resource ceiling: With every global resource R_l, two types of resource ceilings are associated; an external resource ceiling RC_l for global scheduling and an internal resource ceiling rc_{sl} for local scheduling. According to SRP, these ceilings are defined as

$$RC_l = \min(N, \min\{s \mid R_l \in R_s\}), \quad (2)$$

$$rc_{sl} = \min(n_s, \min\{i \mid t_{i} > 0\}). \quad (3)$$

Note that we use the outermost min in (2) and (3) to define RC_l and rc_{sl} also in those situations where no subsystem uses R_l and no task of T_i uses R_l respectively.

2) System/subsystem ceiling: The system/subsystem ceilings are dynamic parameters that change during the execution. The system/subsystem ceiling is equal to the highest external/internal resource ceiling of a currently locked resource in the system/subsystem.

Under SRP, a task τ_{sl} can only preempt the currently executing task τ_{sj} (even when accessing a global resource) if the priority of τ_{si} is greater (i.e. the index i is lower) than δ_s, its subsystem ceiling. A similar condition for preemption holds for subsystems.

3) Concluding remarks: The maximum time X_{sl} that S_i executes while accessing R_l can be reduced by assigning a value to rc_{sl} that is smaller than the value according to SRP. For HSRP [11], the internal resource ceiling is therefore set to the highest priority, i.e. $rc_{sl}^{HSRP} = 1$. Decreasing rc_{sl} may cause a subsystem to become unfeasible for a given budget [16], however, because the tasks with a priority higher than the old ceiling and at most equal to the new ceiling may no longer be feasible.

The results in this paper apply for any internal resource ceiling $rc_{sl}^{'}$ where $rc_{sl} \leq rc_{sl}^{'} \leq rc_{sl}^{HSRP} = 1$.3

IV. RECAP OF EXISTING SCHEDULABILITY ANALYSIS

In this section, we briefly recapitulate the global schedulability analysis presented in [11] and the local schedulability analysis described in [15], [4]. Although the global schedulability analysis presented in [15], [4] looks different, it is based on the analysis described in [11] and therefore yields the same result.

For illustration purposes, we will use an example system Sys_3 containing two subsystems S_1 and S_2 sharing a global resource R_l. The characteristics of the subsystems are given in Table I.

<table>
<thead>
<tr>
<th>subsystem</th>
<th>P_l</th>
<th>$Q_l + X_l$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>S_2</td>
<td>7</td>
<td>$Q_2 + X_2$</td>
</tr>
</tbody>
</table>

Table I

SUBSYSTEM CHARACTERISTICS OF Sys_3.

A. Global analysis

The worst-case response time WR_s of subsystem S_s is given by the smallest $x \in \mathbb{R}^+$ satisfying

$$x = B_s + (Q_s + X_s) + \sum_{t < s} \left[\frac{x}{P_t} \right] (Q_t + X_t), \quad (4)$$

where B_s is the maximum blocking time of S_s by lower priority subsystems, i.e.

$$B_s = \max(0, \max\{X_t \mid t > s \wedge X_t > 0 \wedge RC_l \leq s\}). \quad (5)$$

Note that we use the outermost max in (5) to define B_s, also in those situations where the set of values of the innermost max is empty. To calculate WR_s, we can use an iterative procedure based on recurrence relationships, starting with a lower bound, e.g. $B_s + \sum_{t \leq s} (Q_t + X_t)$. The condition for global schedulability is given by

$$\forall s \leq N \quad WR_s \leq P_s. \quad (6)$$

We merely observe that the global analysis is similar to basic analysis for FPPS with resource sharing, where the period P_s of a subsystem S_s serves as deadline for the sum of the normal budget Q_s and the overrun budget X_s, and the interference of higher priority subsystems S_j is based on the sum $Q_j + X_j$. We will therefore use a superscript P to refer to this basic analysis for subsystems, e.g. WR_s^P.

In the sequel, we are not only interested in the worst-case response time of a subsystem S_s for particular values of B_s, Q_s, and X_s, but in the value as a function of the sum of these three values. We will therefore use a functional notation when needed, e.g. $WR_s(B_s + Q_s + X_s)$.

The global feasibility area of the existing analysis is illustrated for our example system Sys_3 in Figure 1. Note that the y-axis is excluded, because we assume the capacity of subsystems to be positive, i.e. $Q_2 > 0$.

![Figure 1. Global feasibility area assuming FPPS.](image-url)
Figure 2 shows a timeline with a simultaneous activation of \(S_1 \) and \(S_2 \) for \(Q_2 = 3.0 \) and \(X_2 = 0 \), and a worst-case response time \(WR_2 \) of \(S_2 \) equal to 5.0. Note that even an infinitesimal increase of either \(Q_1 \) or \(Q_2 \) will make the system \(Sys \) unschedulable.

\[\forall 1 \leq n, 0 < t < D_{st} \]
\[b_{st} + C_{st} + \sum_{j < i} \frac{t}{T_j} \cdot C_{sj} \leq SBF_{\Gamma_i}(t), \quad \text{(7)} \]

where \(b_{st} \) is the maximum blocking time of \(\tau_{st} \) by lower priority tasks, i.e.

\[b_{st} = \max(0, \max\{c_{sj} \mid j > i \land c_{sj} > 0 \land rc_{j} \leq \tau_{st} \}), \quad \text{(8)} \]

and \(SBF_{\Gamma_i}(t) \) is the supply bound function of the periodic resource model \(\Gamma_i(P_i, Q_i) \) for the subsystem \(S_i \) under consideration. Note that we use the outermost max in (8) to define \(b_{si} \) also in those situations where the set of values of the innermost max is empty.

The value for \(X_{di} \) depends on the local scheduler and the synchronization protocol. The maximum time that subsystem \(S_i \) executes while task \(\tau_{sil} \) accesses resource \(R_i \in R \) is denoted by \(X_{sil} \), where \(X_{sil} \in \mathbb{R}^+ \cup \{0\} \) and \(X_{sil} > 0 \Leftrightarrow c_{sil} > 0 \). For \(c_{sil} > 0 \), \(X_{sil} \) is given by [4]

\[X_{sil} = c_{sil} + \sum_{j < rc_{sil}} C_{sj}. \quad \text{(9)} \]

The value for \(X_{di} \) is given by

\[X_{di} = \max_{1 \leq i \leq n} X_{sil}. \quad \text{(10)} \]

V. IMPROVED GLOBAL ANALYSIS

As described in Section IV-A, the existing global schedulability analysis is based on FPS, where the period \(P_i \) serves as deadline for the sum of the normal budget \(Q_s \) and overrun budget \(X_s \).

A. Illustrating the improvement

In this section, we will present two steps that gradually improve the global analysis:

1) Limited pre-emption of overrun budget \(X_s \);
2) Blocking starts before the execution based on the overrun budget \(X_s \) starts;

1) Limited pre-emption of overrun budget \(X_s \): Subsystem \(S_1 \) can not preempt \(S_2 \) during those intervals of time when \(S_2 \) is accessing resource \(R_1 \) in general, and when \(S_2 \) is executing based on its overrun budget \(X_2 \) in particular. This limited preempt-ability of subsystem \(S_2 \) gives rise to improved schedulability of system \(Sys \), as illustrated in Figure 3. In this figure, it is assumed that \(X_2 \) can be executed without pre-emption. Note that \(X_2 \leq 3.0 \) and \(Q_2 \leq 3.0 \), because

Figure 3. Global feasibility area assuming limited pre-emption of \(X_s \).

\(S_1 \) and \(S_2 \) will otherwise miss their deadline, respectively. Further note that for \(Q_2 = 1.2 \) and \(X_2 = 3.0 \) the utilization of the system \(U = \frac{Q_1 + X_1}{P_1} + \frac{Q_2 + X_2}{P_2} = 1 \). Finally note that the feasibility area shown in Figure 3 would be identical when the global schedulability analysis would be based on fixed-priority scheduling with deferred pre-emption (FPDS) [17], [18], and each job of \(S_2 \) would consist of a sequence of two non-preemptable subjobs with computation times \(Q_2 \) and \(X_2 \), respectively.

We will briefly explain the anomalies in Figure 3 by means of timelines with a simultaneous release of \(S_1 \) and \(S_2 \) at time \(t = 0 \) and assuming that both \(S_1 \) and \(S_2 \) need their overrun budget for every activation.

Figure 4 shows a timeline with \(Q_2 = 1.8 \) and \(X_2 = 2.4 \). Note that the second job of \(S_2 \) misses its deadline at time \(t = 14 \), because the third job of \(S_1 \) is allowed to start at time \(t = 10 \). An infinitesimal decrease of either \(Q_2 \) or \(X_2 \) will allow the execution of \(X_2 \) of the second job to start just before \(t = 10 \) and will allow the second job to meet its deadline.

Figure 4. Timeline for \(Q_2 = 1.8 \) and \(X_2 = 2.4 \) under limited pre-emption of \(X_2 \) with a deadline miss at \(t = 14 \).

Figure 5 shows a timeline with \(Q_2 = 2.0 \) and \(X_2 = 2.0 \). In this case, the second job of \(S_2 \) meets its deadline, because
the workload in the interval $[0, 14]$ is equal to the length of that interval. Note that the configurations of S_2 represented by the line segment of the line $2Q_2 + X_2 = 6.0$ between the points $<1.8, 2.4>$ and $<2.0, 2.0>$ are not feasible. Similarly, the configurations of S_2 represented by the line segment of the line $2Q_2 + X_2 = 6.0$ starting at $<1.8, 2.4>$ till point $<2.0, 2.0>$ are now feasible. Similarly, the configurations of S_2 represented by $Q_2 = 3.0$ and $0 \leq X_2 \leq 1.0$ are feasible as well. We will briefly explain the differences between Figures 3 and 7 by means of timelines.

Figure 8 shows a timeline with $Q_2 = 1.8$ and $X_2 = 2.4$. Because the second job of S_2 locks R_1 just before the activation of S_1 at $t = 10$, S_2 is allowed to execute X_2 at $t = 10$. As a result, the second job of S_2 does not miss its deadline at time $t = 14$.

Figure 9 shows a timeline with $Q_2 = 3.0$ and $X_2 = 1.0$. Similar to the previous case, because the first job of S_2 locks R_1 just before the activation of S_1 at $t = 5$, S_2 is allowed to execute X_2 at $t = 5$. As a result, the first job of S_2 does not miss its deadline at time $t = 7$.

B. Improving the global analysis

The improved global analysis is similar to the analysis for FPDS [17], [18] and FPPS with preemption thresholds [19] in the sense that we have to consider all jobs in a so-called level-s active period to determine the worst-case response time WR_s of subsystem S_s. Unlike the analysis described in [17], [18], [19], subsystems S_{s-1} till S_{RC_s} cannot preempt S_s at the finalization time of Q_s when S_s is accessing R_1, as illustrated in Figures 8 and 9 for the times $t = 10$ and $t = 5$, respectively.

In the remainder of this section, we first present the analysis for the special case where every subsystem accesses at most one global resource, i.e. $M_s \leq 1$, and subsequently present the general case.

1) Access to a single global resource: The worst-case length WL_s of a level-s active period with $s \leq N$ is given by the smallest $x \in \mathbb{R}^+$ that satisfies

$$x = B_s + \sum_{t \leq s} \left(\frac{x}{P_t} \right) (Q_t + X_t).$$

(11)
To calculate \(WL_s\), we can use an iterative procedure based on recurrence relationships, starting with a lower bound, e.g. \(B_s + \sum_{i < s} (Q_s + X_i)\). The maximum number \(wl_s\) of jobs of \(S_s\) in a level-\(s\) active period is given by

\[
wl_s = \left\lfloor \frac{WL_s}{P_s} \right\rfloor. \tag{12}
\]

For a job \(t_{sk}\) of \(S_s\) with \(0 \leq k < wl_s\), we split the interval from the start of the level-\(s\) active period to the finalization of job \(t_{sk}\) in two sub-intervals: a first sub-interval including the execution of the normal budget \(Q_s\) by job \(t_{sk}\) and a second sub-interval from the finalization of \(Q_s\) by \(t_{sk}\) till the finalization of \(t_{sk}\).

The worst-case finalization time \(WF_{sk}^{Q}\) of the normal budget \(Q_s\) of job \(t_{sk}\) with \(0 \leq k < wl_s\) relative to the start of the constituting level-\(s\) active period is given by

\[
WF_{sk}^{Q} = WR_{sk}^{P}(B_s + (k + 1)Q_s + kX_s), \tag{13}
\]

where \(WR_{sk}^{P}\) is the worst-case response time of a fictive subsystem \(S'_s\) with a period \(P'_s = (k + 1)T_s\), a normal budget \(Q'_s = (k + 1)(Q_s + X_s) - X_s\), and a maximum blocking time \(B_s\). Let \(S_s\) access \(R_l \in R_s\). When \(S_s\) starts to consume its overrun budget \(X_s\), the subsystems \(S_{s-1}\) till \(S_{RC_s}\) are already blocked. We only need to consider preemptions by subsystems with a priority higher than \(RC_s\) at and after the finalization of \(Q_s\), and therefore treat the preemptions by subsystems \(S_{s-1}\) till \(S_{RC_s}\) separately. The worst-case interference of the subsystems \(S_{s-1}\) till \(S_{RC_s}\) in the interval of length \(WF_{sk}^{Q}\) is denoted by \(WF_{RC_s}^{-1}\) and given by

\[
WF_{RC_s}^{-1} = \sum_{i = RC_s}^{s-1} \left\lfloor \frac{WF_{sk}^{Q}}{P_i} \right\rfloor (Q_i + X_i). \tag{14}
\]

Subsystems with a priority higher than \(RC_s\) can still pre-empt the execution of \(X_s\). Hence, the worst-case response time \(WR_{sk}\) of job \(t_{sk}\) of subsystem \(S_s\) is given by

\[
WR_{sk} = WR_{RC_s}^{P}(B_{RC_s} + (k + 1)(Q_s + X_s)) - kP_s, \tag{15}
\]

where \(WR_{RC_s}^{P}\) represents the worst-case response time of a fictive subsystem \(S'_{RC_s}\) with a (budget) period \(P_{RC_s}\) and a deadline equal to \((k + 1)P_s\), a normal budget \(Q'_{RC_s}\) equal to \((k + 1)(Q_s + X_s) - X_s\), an overrun budget \(X'_{RC_s}\) equal to \(X_s\), and a maximum blocking time \(B_{RC_s}\) given by

\[
B_{RC_s} = B_s + WF_{RC_s}^{-1}. \tag{16}
\]

Finally, the worst-case response time \(WR_s\) of subsystem \(S_s\) is given by

\[
WR_s = \max_{0 \leq k < wl_s} WR_{sk}. \tag{17}
\]

Example: Sys1 with \(Q_2 = 3.0\) and \(X_2 = 1.0\).

We determine \(WR_2\) using the analysis described above; see also Figure 9. Because \(S_2\) is the lowest priority subsystem, \(B_3 = 0\). We first determine \(wl_2\) using (11) and (12), and find \(WL_2 = 14\) and \(wl_2 = \left\lfloor \frac{WL_2}{T_2} \right\rfloor = \left\lfloor \frac{14}{7} \right\rfloor = 2\). Next we determine \(WR_{2,0}\) and \(WR_{2,1}\) using (13) till (16). Using (13), we find \(WF_{2,0}^{Q} = WR_{2,0}^{P}(B_2 + Q_2) = WR_{2,0}^{P}(3.0) = 5\). Because \(RC_s = 1\), \(WF_{1,0}^{Q} = \left\lfloor \frac{WF_{2,0}^{Q}}{P_1} \right\rfloor (Q_1 + X_1) = \left\lfloor \frac{5}{5} \right\rfloor = 2.0 = 2.0\). Using (16), we find \(B'_1 = B_2 + WF_{1,0}^{Q} = 2.0 = 2.0\). Using (15), we find \(WF_{2,0} = WR_{2,0}^{P}(B'_1 + (Q_2 + X_2)) = WR_{2,0}^{P}(6) = 6\). Similarly, we find \(WF_{2,1} = WR_{2,1}^{P}(7.0) = 13\), \(WF_{1,1} = \left\lfloor \frac{WF_{2,1}^{Q}}{P_1} \right\rfloor (Q_1 + X_1) = \left\lfloor \frac{13}{5} \right\rfloor = 2.0 = 6.0\), \(B'_1 = B_2 + WF_{1,1}^{Q} = 2.0 = 6.0\), and \(WF_{2,1} = WF_{2,1}^{P}(B'_1 + (Q_2 + X_2)) = WR_{2,1}^{P}(14) = 7\). Finally, using (17) we find \(WR_2 = \max(WF_{2,0}, WF_{2,1}) = \max(6, 7) = 7\).

2) **Access to multiple global resources:** When a subsystem uses multiple global resources, we have to slightly adapt our analysis. In particular, when the resource ceiling \(RC_{sl}\) of resource \(R_l \in R_s\) is larger than \(RC_{sl'}\) of resource \(R_l' \in R_s\), i.e. more subsystems can pre-empt \(S_s\) during its access to \(R_l\) than to \(R_{l'}\), and the maximum execution access time \(X_{sl}\) of \(S_s\) to \(R_l\) is smaller than \(X_{sl'}\), the system may be schedulable for \(R_{l'}\) but not for \(R_l\). As an example consider a system containing 2 global resources \(R_1\) and \(R_2\) and 3 subsystems \(S_1\), \(S_2\), and \(S_3\), where the subsystems have timing characteristics as given in Table II. The schedulability of \(S_3\) for \(X_{3,1}\) follows immediately from the similarity of systems \(S_{sys1}\) and \(S_{sysII}\), and the feasibility area shown in Figure 7. Subsystem \(S_3\) just meets its deadline at \(t = 7\) for its overrun budget \(X_{3,2} = 0.4\) under worst-case conditions, i.e. a simultaneous release of all three subsystems at time \(t = 0\) and resources accesses by both \(S_1\) and \(S_2\) requiring the usage of their overrun budgets at every activation; see Figure 10. Note that subsystem \(S_3\) will miss its deadline at time \(t = 7\) for an infinitesimal increase \(e > 0\) of \(X_{3,2}\).

![Figure 10](image-url)

Figure 10. Subsystem \(S_3\) just meets its deadline at \(t = 7\) for \(X_{3,2} = 0.4\).
to use X_i and RC^i rather than R_i, where RC^i is defined as
\[
RC^i = \max\{RC_l | R_l \in R_i\}.
\] (18)

Note that such an analytical approach would classify Example II as unschedulable, however.

Alternatively, we can determine the worst-case response time for each job of S_i for individual global resources and subsequently take the maximum, i.e. we replace (15) by
\[
WR_{skl} = WR_{RC_l}(b'_{RC_l} + (k + 1)Q_s + kX_s + X_{skl}) - kP_s
\] (19)
and
\[
WR_{sk} = \max_{l} WR_{skl}.
\] (20)

Example: System S_{sys}
We (only) determine $WR_{3,0}$ using the analysis described above; see also Figure 10. Because S_3 is the lowest priority subsystem, $B_3 = 0$, and $WR^Q_3 = WR^P(B_3 + Q_3) = WR^P_3(3.0) = 5.0$. We first determine $WR_{3,0,1}$. For R_1 and $RC_l = 1$, we find $\Gamma^{Q}_{1,0} = \sum_{k=1}^{\infty} |WF^Q_{3,0}/T_0| (Q_s + X_s) = 2.0$ and $B'_2 = B_3 + WR^P_1(2.0) = 2.0$. Using (19), we find $WR_{3,0,1} = WR^P(B'_2 + Q_3 + X_{3,1}) = WR^P_1(6.0) = 6.0$. Next, we determine $WR_{3,0,2}$. For R_2 and $RC_2 = 2$, we find $\Gamma^{Q}_{2,0} = \sum_{k=2}^{\infty} |WF^Q_{3,0}/T_2| (Q_s + X_s) = 0.4$ and $B'_2 = B_3 + WR^P_2(0.4) = 0.4$. Using (19), we find $WR_{3,0,2} = WR^P(B'_2 + Q_3 + X_{3,2}) = WR^P_2(3.8) = 7.0$. Finally, using (20) we find $WR_{3,0} = \max(WR_{3,0,1}, WR_{3,0,2}) = \max(6.0, 7.0) = 7.0$.

VI. IMPROVED LOCAL ANALYSIS

Both the existing global schedulability analysis and the improved global schedulability analysis assume a deadline for a subsystem S_i equal to its period P_i for the sum of the normal budget Q_s, and the overrun budget X_s. The existing local schedulability analysis for the tasks of S_i is exclusively based on Q_s, however. Hence, when a system is feasible from a global scheduling perspective, the latest finalization time of Q_s is guaranteed to be at least X_s before the next activation of S_i. Hence, we can use the supply bound function $sbf_e(t)$ of the EDP resource model $\Omega_e(P_s, Q_s, \Delta_s)$ for overrun without payback rather than $sbf_{\Gamma}(t)$ of $\Gamma(P_s, Q_s)$ in (7), where $\Delta_s = P_s - X_s$. Because $X_s \geq 0$ for all subsystems (by definition), $sbf_{\Gamma}(t) \leq sbf_e(t)$ for all subsystems. As a result, a subsystem may be schedulable according to the local analysis based on $sbf_e(t)$, but not be schedulable based on $sbf_{\Gamma}(t)$.

Figure 11 shows an example of the supply bound functions $sbf_e(t)$ and $sbf_{\Gamma}(t)$ for subsystem S_2 of system S_{sys} with $Q_2 = 1.8$ and $X_2 = 2.4$.

VII. DISCUSSION

In this section, we consider directions for further improvements.

A. Decreasing external resource ceilings

Figure 10 showed a timeline where subsystem S_3 just meets its deadline at $t = 7$ for $X_{3,2} = 0.4$. By decreasing the external resource ceiling RC_2 of resource R_2 from 2 to 1, subsystem S_1 can no longer pre-empt the execution of S_3. As a result, the resource holding time $\{t\}$ of R_2 by S_3 is reduced from $Q_1 + X_{1,1} + X_{3,2} = 2.4$ to $X_{3,2} = 0.4$.

For this particular example, it immediately follows from the similarity with system S_{sys} that we can even increase $X_{3,2}$ to 1.0 when we decrease RC_2 from 2 to 1 without making the system unschedulable. In general, decreasing a resource ceiling RC_i from u to v may improve the schedulability of subsystems S_u, with $s \geq u \geq v$, and worsen the schedulability of subsystems S_v with $u > w \geq v$. Hence, given the improved global schedulability presented in Section V, we may further improve the schedulability of a system by decreasing external resource ceilings of global resources. Note that this improvement is only possible because of the limited preemptability of the overrun budget on the one hand and the fact that the overrun budget is executed as last budget.

B. Further global analysis improvements

We briefly consider two further improvements of the global analysis, which we also illustrate by means of system S_{sys}, i.e.

- the deadline P_i holds for Q_s, only;
- discarding the remainder of X_s upon a replenishment.

Because the deadline P_i only holds for Q_s, the improvement of the local schedulability analysis described in Section VI does no longer apply for these two further improvements of the global analysis.

1) Deadline only for normal budget: The overrun budget is needed if and only if the normal budget Q_s of a subsystem S_i becomes depleted whilst S_i holds a global resource. As soon as the normal budget is replenished, there is no need to use the overrun budget. Hence, the deadline of a subsystem S_i only holds for its normal budget. The resulting improvement is illustrated in Figure 13.

2) Overrun ends upon replenishment: The last improvement results from the observation that the remainder of the overrun budget X_s of a subsystem S_i can be discarded upon replenishment of its normal budget Q_s. As a result, the
utilization U of the subsystems expressed as $\sum_{i=1}^{N} \frac{Q_i + X_i}{P_i}$ can become larger than 1. The resulting improvement is illustrated in Figure 14.

![Figure 14](image)

Figure 14. Feasibility area assuming overrun ends upon replenishment.

Figure 12 shows a timeline for $Q_2 = 2.8$ and $X_2 = 3.0$ with a simultaneous activation of S_1 and S_2 at $t = 0$. The figure illustrates that 0.8 of the overrun budget X_2 is lost at times $t \in \{7, 21, 35\}$ and that 2.8 is lost at times $t \in \{14, 28\}$.

VIII. CONCLUSION

We showed that existing global and local schedulability analysis of synchronization protocols based on SRP and overrun without payback for two-level hierarchical scheduling based on FPPSs is pessimistic. We presented improved global and local analysis assuming that the deadline of a subsystem holds for the sum of its normal budget and its overrun budget, and illustrated the improvements by means of examples. We briefly discussed further options for improvements, i.e. (i) to decrease external resource ceilings and (ii) to assume that the deadline P_i only holds for Q_i and that X_i can be discarded upon a replenishment of the budget of S_i. For improvement (ii), the improved local analysis can not be applied, however.

The evaluation of the improvements through simulation, the consequences of decreasing resource ceilings, the sustainability of the analysis [20], and the applicability of the improvements identified for the other flavor of the overrun mechanism, i.e. with payback, are left as topics of future work.

ACKNOWLEDGEMENTS

We thank Martijn M.H.P. van den Heuvel from the TU/e for his comments on an earlier version of this paper.

REFERENCES

