Automatic Detection of Recurring Operation Patterns

Marnix Arnold and Henk Corporaal
Computer Architecture Laboratory
Department of Electrical Engineering
Delft University of Technology
{marnix,heco}@cardit.et.tudelft.nl
http://cardit.et.tudelft.nl/MOVE/

Abstract

An important problem in the area of processor design for embedded systems is determining the proper instruction set architecture. Trade-offs have to be made between programmability and reusability of dedicated hardware for special functionality on the one hand, and a high performance dedicated instruction set on the other hand. This paper addresses the question of how to find specialized ISA extensions for a set of applications. We describe the application of a new pattern matching technique to the problem of the identification of recurring patterns of operations. By implementing frequently occurring operation patterns in hardware, and using this hardware as special function units, a fine-grained hardware/software partitioning can be found. The fine granularity, and the fact that patterns are taken from a number of different target applications rather than a single one, increase the opportunities for reuse of the special-purpose hardware. We illustrate our technique with experiments on a number of benchmarks from the DSP domain.

keywords: pattern matching, co-design, design space exploration, instruction set synthesis.

1 Introduction

Hardware/software co-design is often performed on a per-application basis, yielding systems that are highly application-specific. The approach taken is usually a coarse-grained one: entire functions of the application are mapped either in hardware or software [4]. Any hardware thus generated is only reusable by other applications if those include the same function. For application-specific systems this is obviously not a problem. For application-domain-specific, reprogrammable systems, however, we may want to increase the granularity of the hardware/software partition, to increase the chances of hardware reuse. It is with this in mind that we consider a partitioning approach that centers on groups of instructions rather than entire functions. In this paper, we present a new algorithm for the automatic, on-the-fly detection of groups (patterns) of instructions as they occur in the application(s) that we want to generate an execution engine for. Patterns that occur frequently among the target applications can then be considered for implementation in hardware.

Section 2 discusses work from the related areas of instruction set synthesis, technology mapping and code generation. An overview of the algorithm used for the detection of recurring operation patterns is given in section 3. Experiments and their results are described in section 4. We conclude this paper with section 5.

2 Related Work

Pattern matching techniques have been around for quite some time, originating from the string matching problem [1]. Keutzer [5] first applied pattern matching techniques to the problem of technology mapping, noting similarities with the code generation problem [2]. Recent work by Kukimoto [6] extended these techniques to allow for rooted-DAG-shaped subject graphs, as opposed to tree-shaped graphs. Liao et al. [7] use a binate covering technique that allows the subject graph to have any geometry. However, no matching techniques are available that deal with patterns that are not trees or single-output DAGs [9]. We would like to detect and exploit such patterns, though, so we were forced to come up with a new matching algorithm [3].

The work in this paper is somewhat related to the field of instruction set synthesis. Liem et al. [8] use matching and covering techniques to identify recurring instances of patterns from a predefined library, rather than constructing this library automatically, as we will do. The search for new operation patterns as described...
in [10] is limited to chains (sequences) of operations, whereas we consider patterns of any shape.

3 Algorithm Overview

For the matching of pattern graphs that are not trees, conventional techniques are not suitable. For this reason, we have come up with a new matching algorithm, based on the principle of incremental matching. In this section we will give a brief overview of the matching algorithm and how it can be extended to automatically construct a library of recurring patterns. The covering algorithm we employ in section 4 will not be discussed, for the purposes of this paper it will suffice to say that it is a heuristic method, based around the dynamic programming approach taken in tree covering. A comprehensive description of the algorithms can be found in [3].

3.1 Incremental Matching

Given a subject graph \(G_{\text{sub}} \) and a library of pattern graphs \(\text{PatLib} = \{ G_{\text{pat}_i} \} \), as shown in figure 1, we iterate over all operation nodes in \(G_{\text{sub}} \) (nodes I, II and III), in no particular order. Each of the subject graph's operation nodes \(N_{\text{sub}} \) is matched against the pattern graphs' operation nodes \(N_{\text{pat}} \) that have the same opcode. Each time a pair of operation nodes \((N_{\text{sub}}, N_{\text{pat}})\) meets certain matching criteria, which we will not go into here, a partial match is created. In figure 2, the partial matches \(m_1 \) and \(m_2 \) constructed for pattern graph \(G_{\text{pat}_4} \) are shown (there would, of course, also be partial matches for the other patterns). As can be seen, a match is really nothing more than two reference vectors that refer to subject operations and operands, respectively. The position a reference occupies in a reference vector indicates with which pattern operation (operand) it corresponds to.

Looking at the partial matches shown in figure 2, we notice that the matches \(m_1 \) and \(m_2 \) share the reference to subject operand node \(c \). These two matches can be combined into a new match \(m_3 \), which is the union of the two. This match has no empty spaces in its reference vectors and is said to be complete. In the same manner, we can combine partial matches for other patterns into complete matches, regardless of the shape of those patterns. Indeed, pattern graph \(G_{\text{pat}_5} \), which is a multiple-output DAG, is matched in the exact same way as graph \(G_{\text{pat}_4} \) from our example.

3.2 Library Construction

Another drawback of using a conventional matching algorithm is that it requires the pattern library to be defined beforehand. This implies that we need some advance knowledge of which patterns to expect, but such knowledge may not be available. We will show that this problem can be overcome by extending the incremental matching algorithm to include automatic library construction capabilities.

As before, we start with a subject graph \(G_{\text{sub}} \) and a library of pattern graphs \(\text{PatLib} = \{ G_{\text{pat}_i} \} \), as shown in figure 3. The difference with the previous example is that the initial pattern library now only contains a minimal set of patterns: just the one with a single operation node. When we start processing the subject graph's operation nodes, we will initially only construct matches for the single-operation pattern graphs. Whenever we finish constructing partial matches on an operation node, we can now look for opportunities to create new pattern graphs.

In the example of figure 3, after we finish processing operation nodes I and II (again in an arbitrary order), we see that two matches \(m_1 \) and \(m_2 \) both contain a reference to operand node \(c \). Note that now the matches refer to different patterns, which was not the case in the example of figure 2. By combining the matches \(m_1 \) and \(m_2 \) into a new match \(m_3 \), we have a recipe for constructing a new pattern! By copying all the nodes (operations and operands) referenced in \(m_3 \) into a new
Figure 3: Pattern construction by combining matches.

pattern and adding it to the library, we will be able to log all future occurrences of this pattern.

4 Experiments

We execute our method for detecting recurring patterns of operations on a number of well-known benchmarks from the DSP domain. In this paper, we limit the size of the patterns to two operation nodes, even though the pattern detection and matching algorithms can handle patterns of arbitrary size. An overview of the benchmarks, with their dynamic operation counts, is given in table 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>#ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>b spline</td>
<td>FIR Filter</td>
<td>6149</td>
</tr>
<tr>
<td>compress</td>
<td>Compression (dct 2d)</td>
<td>163513</td>
</tr>
<tr>
<td>dft</td>
<td>Discrete FFT</td>
<td>6666</td>
</tr>
<tr>
<td>edge</td>
<td>Edge detection</td>
<td>268717</td>
</tr>
<tr>
<td>expand</td>
<td>Decompression (ldct 2d)</td>
<td>151083</td>
</tr>
<tr>
<td>fowf</td>
<td>5th Order Elliptic Wave</td>
<td>13067</td>
</tr>
<tr>
<td>fir</td>
<td>35 pt. Lowpass FIR</td>
<td>30459</td>
</tr>
<tr>
<td>flatten</td>
<td>Level histogram of image</td>
<td>33960</td>
</tr>
<tr>
<td>iir</td>
<td>IIR highpass filter</td>
<td>10794</td>
</tr>
<tr>
<td>pse</td>
<td>Schw's FIR filter</td>
<td>6917</td>
</tr>
<tr>
<td>smooth</td>
<td>Convolution w. 3x3 kernel</td>
<td>83365</td>
</tr>
</tbody>
</table>

Table 1: DSP benchmarks.

Each benchmark is trace simulated, and the pattern detection experiments are performed on the dataflow graph of the execution trace. The detected patterns for all benchmarks are then put into a unified pattern library. This library is then used to cover the execution trace of each benchmark, to get a feeling for how much each pattern would help reduce the operation count of that benchmark. These coverings can be seen as the best results the covering algorithm can attain with an unbounded pattern library (after all, all patterns ever detected in any of the benchmarks are there).

The reason we use an execution trace rather than the static object code for our experiments is that a trace effectively masks control flow, making pattern matches visible that reach across basic block or even loop boundaries. If we cover the trace with the patterns we found, then the matches that cross control flow boundaries would seem to indicate that code motion (speculative execution, loop unrolling, etc.) could be beneficial.

Constructing a unified library After covering, we calculate how often each pattern was used for each benchmark. Note that it is misleading to just count the matches for that pattern, as it is unknown how many of those (likely to be mutually exclusive) matches will be chosen for the cover. The patterns can now be sorted according to how much they contributed to the unbounded-library covering (i.e. as a percentage of the total number of matches that were chosen for the cover). Since we are most interested in patterns that contribute to the operation count reduction of the entire application domain, rather than just one application, we sort the patterns by the average of their contributions to the per-benchmark coverings. The reason we average the contributions of the patterns (a percentage) rather than the absolute share in the coverings (a number of pattern instantiations) is that we do not want to skew our results towards the larger benchmarks. This yields a unified, sorted pattern library in which all benchmarks are represented equally.

Unbounded library covering analysis In figure 4, we see the (cumulative) contribution to the individual benchmarks’ coverings of pattern libraries that consist of the top-x patterns of the unified library. As can be seen, some benchmarks get a better-than-average contribution (bspline, pse) and some get a worse-than-average contribution (foewf). This can be interpreted as follows: the more an application’s contribution graph pulls towards the upper-left corner of the figure, the more ‘average’ or representative for the application domain the application is. As a consequence of this, figure 4 can also be used to judge how well the applications fit together on the same instruction set, something which is difficult to determine by inspection of the benchmarks’ source code alone. A final remark on figure 4: it can be seen that from the top-80 patterns onward, there is no additional contribution to the covering of any of the benchmarks (the 100% mark has been reached). This implies that none of the patterns added to the library from that point onward are ever actually used in the coverings of any of the benchmarks.

Covering with partial libraries Now that we have found a ranking of patterns in the unified library, we can check if there is a relation between the contribution
Figure 4: The contribution of patterns to the coverings.

of the patterns in the top-x libraries to the 'ideal' (unbounded library) covering, and the actual results of the covering algorithm for each of the top-x libraries. For this, it is necessary to re-cover each of the benchmarks using each of the top-x pattern libraries. The results of these coverings can be found in figure 5. It can be expected that if a library has a lower-than-average contribution (in figure 4), then the operation count reduction will also be below average. This is confirmed by the curve for the fowf benchmark. Similarly, benchmarks with a higher-than-average contribution should have a higher-than-average operation count reduction. The operation count reduction curves for the hspline and pse benchmarks confirm this.

Note that the curves in figure 5 do not increase monotonically, which is what we would expect if we give the covering algorithm an extra pattern to work with each time. These occasional dips are due to the fact that the covering algorithm is a heuristic method, which every once in a while gets confused and yields a sub-optimal result. Also note that 50% operation count reduction is a hard limit: since, for the purposes of this experiment, we only use patterns that are no larger than two operations, the best result we can theoretically get is obtained if all operation are replaced, in pairs, with two-operation patterns. In addition, it must be noted here that, since the covering algorithm operates on execution traces and hence ignores control flow, the operation count reduction figures must be seen as upper bounds for the operation count reduction that a compiler can achieve when performing code generation (when control flow is taken into account).

Figure 5: Operation count reduction for the incremental pattern libraries.

Analysis of the top 10 patterns The top ten patterns of the unified library are shown in figure 6. The most popular pattern (nr.1) is an integer add, followed by another integer add. In hardware, this can be implemented as an add, followed by an accumulate on the same unit, or as a 3-input, 2-output unit that can execute the pattern in a single processor cycle [11]. The second pattern is a conditional jump, where the condition is calculated by the greater-than node. Patterns 5 and 7 are array references, where the address calculation consists of a base-plus-offset calculation. Pattern 6 is the well-known multiply-add, pattern 8 the almost equally well-known add-shift. Note that pattern 9 performs the same calculation on both nodes! It looks as if the compiler missed an optimization opportunity, possibly hidden by control flow.

It can be seen that the top 10 patterns are not proper trees, since most also export their intermediate values. However, with the exception of pattern 9, none of the patterns represent operations that execute in parallel. It is quite possible that this is an artifact of the covering heuristic, which favors chains of operations. It will be interesting to see whether this situation changes if we come up with a different covering strategy.

5 Conclusion and Future Work

We presented a technique for identifying common operation patterns across a range of applications, using a new pattern matching algorithm. This algorithm is innovative in that it can handle patterns of arbitrary shape, widening the scope of the search for operation patterns that can be implemented in hardware. Newly
discovered patterns are added to the pattern library on-the-fly, resulting in a single pattern detection (finding new patterns) and matching (marking occurrences of patterns) pass.

Using the new technique, we found patterns of operations common to a set of benchmarks, which, when covering is applied, indicate that a substantial operation count reduction is possible (e.g. 20 patterns yield an average operation count reduction of 40%). Furthermore, we were able to incrementally construct a library of new operations (patterns) and analyze the influence of each new operation on the average operation count as well as on the operation count of each benchmark separately.

The covering heuristic, which was based on dynamic programming, still leaves something to be desired. The influence of the covering algorithm on the selection of the patterns of various shapes is not well understood at this point. Different algorithms may yield different top-k pattern libraries, which is something that needs to be investigated.

It has already been noted that our method operates on (dynamic) execution traces rather than (static) code. The absence of control flow in an execution trace can be seen as both an advantage (patterns invisible in static code can be detected) and a disadvantage (covering results are upper bounds, rather than actual, attainable values). In the future, we will concentrate on how to apply our current techniques to the problem of code generation.

References

