Routing for Reliable Manufacturing
Ed P. Huijbregts, Hua Xue, and Jochen A. G. Jess

Abstract—The impact of spot defects on the susceptibility for electrical failure of a net is analyzed. Based on this analysis, a
general routing cost function is presented, in which the manu-
facturability of a net is taken into account in conjunction with
traditional routing objectives. The new cost function, relating the
process spot defects to the routing procedure has been imple-
mented. Failure probabilities are analyzed for the benchmark
layouts obtained by our routing tool using both the original cost
function and the new cost function. The results show that the
failure probability of a layout is significantly decreased if the spot
defect mechanism is taken into account in the routing procedure,
while the area of the layout is kept constant.

I. INTRODUCTION

Routing a net is a “classical” topic in CAD for VLSI.
The problem can be formalized as the Minimum Steiner
Tree problem in an appropriate routing graph [6]:

Problem: minimum Steiner Tree,
Instance: a connected undirected graph G = (V, E), also
called routing graph, with edge cost function λ : E → R+,
and a net N ⊆ V, consisting of vertices to be connected,
Configurations: all edge-weighted trees,
Solutions: all Steiner trees for N in G, denoted as Eς,
i.e., all trees of G connecting all vertices of N with all its
leaves being vertices in N,
Minimize: λ(T) = Σe∈Eς λ(e).

Many algorithms exist to solve the minimum Steiner
Tree problem, see [4] for an excellent overview. All of these
algorithms will come up with significantly different routings if
different cost functions are applied. Conventionally, the edge
cost function λ(e) is defined as the product of the distance
d between two adjacent vertices and a control factor c, i.e.,
λ(e) = cd. Parameter c is used to adjust the edge weights
in or between the different mask layers. For example, by
setting a larger value of c for the poly layer and a smaller
value of c for the metal layer, connections with high signal
propagation speed can be obtained instead of a real shortest
path in distance. Furthermore, by choosing different values
for c for different routing directions, thus favoring certain
directions, a routing style can be imposed. Summarizing,
the traditional cost function can affect a routing in three aspects:
the net length, the performance, and the routing style.

As process feature size keeps decreasing and IC chips are
becoming more complex, chips are more sensitive to process
disturbance. Inductive Fault Analysis (IFA) [9] reveals that
close nets are likely to get shorted because of spot defects,
the main local disturbance in fabrication processes. Therefore,
from the point of view of defect analysis, the yield of a
good routing depends not only on the net itself, but also on
the environment of the net. In other words, the minimization
of the cost of a net in terms of the net length is not the
optimal solution if the failure possibility of the net is taken
into account. Obviously, the proposed cost function λ(e) does
not adequately cover this issue.

The idea to relate the routing procedure to the process
defects has been proposed in several papers [1], [2], [5], [8].
In [8], a channel router called Defect Tolerant Routing (DTR)
was implemented to minimize the critical areas between the
horizontal routing segments. Later on, the authors [1] tried
to minimize the critical areas between both the horizontal
and the vertical segments by searching for valid gaps
in routing channels. It has also been proposed that layout be
modified in order to minimize via count and critical areas on
each layer for two layer routing channels [5]. In all papers,
there are still quite a few drawbacks that make the routing
results far from being effectively defect-tolerant. The main
reasons are as follows.

1) Only spot defects causing extra material (bridges)
are considered. Consequently, when the probability
of bridge faults decreases by minimizing the critical
area for bridges, the probability of open faults, caused
by missing material, likely increases. This is a valid
assumption since routers generally try to minimize the
net length, and therefore the probability of open faults
is minimized. Modifying such a minimum net length
layout in order to minimize the probability of bridge
faults will usually result in longer net, and therefore
the probability of opens increases.

2) Only the single layer defect model is used for modeling
the spot defects. The fact that in addition missing
material or extra material between mask layers will give
rise to more bridges or opens is not taken into account.

3) The tradeoff between the increase of the number of vias
(potential open sites) and the decrease of the critical area
for bridges is not considered.

4) Only one defect size is considered. However, spot de-
faults are distributed with random sizes in reality. To
accurately model spot defects, it is important to take
into account the defect size distribution.

In this paper, according to the defect size distribution and the
process statistics, the failure probability of a net is analyzed.
Based on the analysis, we propose a new edge cost function for the general routing problem. By applying the new cost function, a good tradeoff between the minimization of the net length and the minimization of the failure probability can be obtained for each net, which consequently leads to a better layout manufacturability. Part of this work has been published in [14].

II. SPOT DEFECTS

The functional failure of a chip is likely caused by spot defects [12]. The result of a spot contamination in a process step is either extra material or missing material at the place where the spot occurs [7]. A spot defect may either occur in one layer of the silicon structure, such as the metal layer or the poly layer, or somewhere between two layers, where it causes extra or missing oxide. We classify spot defects as follows.

1) One layer extra material defects (OE): The defects may cause bridges between connection patterns in the same layer. For example, the spot defect with size \(d \) in the metal layer will result in a bridge between nets 1 and 2 as shown in Fig. 1(a).

2) One layer missing material defects (OM): The defects will result in open faults if the spot defects break the connection patterns in one layer. Such a case where a spot defect breaks a net in the metal layer is shown in Fig. 1(b). If the defects cause missing via patterns, the open faults will also be induced because of missing vias.

3) Inter-Layer extra oxide defects (IE): If the defects occur in the oxide at the location of vias, the vias may be blocked, thus leading to open faults. Fig. 2(a) shows an example where a via connecting metal 1 and metal 2 is broken by the spot defect.

4) Inter-Layer missing oxide defects (IM): The defects are also referred to as oxide pinholes. If the defects occur in the oxide between two overlapping conductors, the conductors are shorted. For instance, the pinhole in Fig. 2(b) causes a new via connecting metal 1 and metal 2, and therefore results in a bridge.

In the next section, assuming the above four types of spot defects to be the main random disturbance in the IC processes, we propose a formula to predict the probability of the failure of a net by taking into account the spot defect size distribution and the critical areas with respect to the various types of spot defects. Based on the formula, a routing strategy is suggested to minimize the probability of the failure of a net during the creation of the net.

III. THE FAILURE PROBABILITY OF A NET

Critical area, defined as the area in which the center of a defect must fall to cause a fault, can be extended to the critical area with respect to a particular object. The object can be any spot defect type. Suppose the spot defect size distribution for object \(\eta \) is \(D_\eta(x) \), and the critical area with respect to object \(\eta = A_\eta(x) \), where \(x \) is the spot defect size. If a uniform defect density \(P_\eta \) is assumed, then the probability of the failure of object \(\eta \), denoted as \(F_\eta \), can be expressed as:

\[
F_\eta = P_\eta \int_{\text{min}}^{\text{max}} D_\eta(x) A_\eta(x) \, dx
\]

where \(\text{min} \) and \(\text{max} \) are the minimum and the maximum defect sizes. There have been many efforts on modeling the defect size distribution. In this paper, the size distribution function taken from [10] is assumed. In principle, using other size distribution functions will not affect the following discussions. By replacing function \(D_\eta(x) \) with \(X_0^2 / x^3 \), where \(X_0 \) is the peak defect size of the distribution, we obtain

\[
F_\eta = P_\eta X_0^2 \int_{\text{min}}^{\text{max}} A_\eta(x) \frac{1}{x^3} \, dx. \tag{1}
\]

As described in the previous section, the spot defects can be classified by four types. For each net, the critical area \(A_\eta(x) \) with respect to the spot defects of type \(\eta \) can be estimated by using the virtual artwork concept proposed in [7]. Hence, the failure probability for each type of spot defect can be computed according to (1).

Given a net \(N \), suppose the net length is \(l \), and the net width and spacing are \(w \) and \(s \), respectively. Assume \(b \) is the total length of the adjacent segments with the neighboring nets, and \(o \) is the number of overlapping sites, i.e., the number of unit area overlaps with the conductors in the upper or lower layer as shown in Fig. 3. In addition, we suppose the number of vias on net \(N \) is \(v \).

1) Type OE: If the defect size \(x \) is smaller than \(s \), then the defects will not cause any fault due to the zero critical area. If \(s \leq x < 2s + w \), the critical area \(A_{\text{OE}}(x) \) is equal to \((x - s)b \). However, when the defect size is equal or larger than \(2s + w \), the critical area will be saturated to \((s + w)b \). Consequently, the probability of the failure of defect type OE is

\[
F_{\text{OE}} = P_{\text{OE}} X_0^2 \left(\int_{s}^{2s+w} \frac{x-s}{x^3} \, dx + \int_{2s+w}^{\text{max}} \frac{s+w}{x^3} \, dx \right).
\]
By setting \(\max \) to \(\infty \), we obtain \(F_{OE} = \alpha b \), with
\[
\alpha = \frac{P_{OE}X_O^2}{2} \left(\frac{1}{s} - \frac{1}{(2s + w)} \right)
\]
(2)

2) Type OM: When the defect size is smaller than \(w \), it is not possible that the net will be broken by the defect. Therefore, the critical area is zero. Consequently the probability of the failure caused by the defects of type OM can be described as
\[
F_{OM} = \int_{w}^{\infty} \frac{1}{b} \, dx + \int_{2w+s}^{\infty} \frac{s + w}{x^3} \, dx
\]
Similarly, we derive \(F_{OM} = \beta l \), where
\[
\beta = \frac{P_{OM}X_O^2}{2} \left(\frac{1}{w} - \frac{1}{(2w + s)} \right)
\]
(3)

3) Type IE: Since the defects of type IE will only break conductors traversing the oxide, i.e., vias, the probability of the failure caused by this type of defects is proportional to the number of vias on the net. It needs to be mentioned that the defects in oxide no longer follow the normal size distribution function. Here, we assume a simple model to estimate the failure probability. (Since the distribution function of [10] is used.) Suppose the size of a via is \(w \times w \). The probability of failure can be estimated by \(F_{IE} = \gamma v \), where
\[
\gamma = P_{IE}w^2.
\]
(4)

4) Type IM: The defects will cause parasitic vias between two layers of the silicon structure. However, the parasitic vias are functionally harmful only if the vias occur in places where two conductors overlap. As a result, the conductors are shorted by the pinhole defects. The overlap area can be treated as the critical area for the pinhole defects, assuming: 1) that a pinhole occurring in the overlap area will result in a bridge fault, and 2) there is no size distribution for pinhole defects. Therefore, the probability of failure caused by defects of type IM can be estimated by \(F_{IM} = \delta n \), where
\[
\delta = P_{IM}w^2.
\]
(5)

According to the above analysis, the parameters \(P_{OE}, P_{OM}, P_{IE}, P_{IM}, \) and \(X_O \) are process-related, while \(w \) and \(s \) are determined by the design rules. Since these parameters are independent to routers, the total probability of the failure \(F \) of net \(N \) can be given by summing up the probabilities of the failures caused by the different types of defects, i.e.,
\[
F = F_{OE} + F_{OM} + F_{IE} + F_{IM}
\]
= \(\alpha b + \beta l + \gamma v + \delta n \)
(6)

where \(\alpha, \beta, \gamma, \delta, \) and \(\delta \) are given by the previous equations.

It is obvious that the reduction of \(b, l, v, \) and \(\delta \) is an effective way to decrease the probability of the failure of the net \(N \) for a router.

IV. NEW COST FUNCTION

Given a routing graph \(G = (V, E) \) with edge weights \(\lambda(e) \).

The cost of a net is defined as the sum of the cost of the edges of the Steiner tree that connects the terminal vertices. Let \(E_T \subseteq E \) denote the set of edges; then, the cost of a net is given by
\[
C = \sum_{e \in E_T} \lambda(e).
\]
(7)

The goal is to find a minimum cost connection for each net. We combine the conventional cost function of (7) with the failure cost function of (6) according to
\[
C_{new} = C + \rho F.
\]
(8)

In conventional routing algorithms, the goal is to achieve minimum total net length, implying minimum area. Thus, the conventional cost function is modeled as a minimum length cost function. In addition to the net length and the number of vias which are considered in conventional cost functions, the failure cost function introduces two new aspects, namely bridges and overlaps. In essence, minimizing both net length and bridges/overlap is contradictory. Therefore, for dense circuits, net length minimization should be favored over minimizing bridges/overlap because routing space is limited, as opposed to sparse circuits, where minimization of bridges/overlap may be favored over net length minimization. Thus, \(\rho \) is directly proportional to the sparsity of a circuit. We define the sparsity of a circuit as
\[
s = 1 - \frac{A_n}{A_r}
\]
(9)

where \(A_n \) denotes the amount of space necessary to lay down all nets as estimated by the global router and \(A_r \) denotes the amount of free routing space after placement. Notice that

![Fig. 3. Explanation of parameters w, b, l, o.](image-url)
maximally sparse circuits have \(s = 1 \) and maximally dense circuits have \(s = 0 \). Obviously, \(s < 0 \) indicates circuits that are not routable.

Since \(\rho \) is a weight factor, it depends on the actual values occurring in the conventional cost function \(G \). As we will show in the next section, we can derive a weight factor \(\sigma \) to take into account this dependency. Thus, we may write \(\rho \) as

\[
\rho = s \sigma.
\]

V. INCORPORATING ROUTING STYLE

We assume that the routing space is modelled as a 3-D grid graph \(G = (V, E) \). An edge \(e \in E \) of the grid graph may have one of three directions, called \(x-, y-, \) and \(v\)-directions, as indicated in Fig. 4(a). Vias are represented by edges in the \(v\)-direction. Wires are allowed to run over edges and bend at grid points. An edge \(e \in E \) of the grid graph is said to be active if it is part of a wiring pattern. Edges that are not part of a wiring pattern are called inactive. The status of an edge may be changed from inactive to active by the router. Possibly, initial wiring patterns exist in the grid graph.

As mentioned in the introduction, we distinguish three aspects that may affect the edge cost function \(\lambda(e) \). To cover these aspects, we assume that for each layer \(i \), three costs are specified, namely \(c_i^x, c_i^y, \) and \(c_i^v \). Here, \(c_i^x \) denotes the cost of edges in the \(x\)-direction, \(c_i^y \) denotes the cost of edges in the \(y\)-direction, and \(c_i^v \) denotes the cost of vias connecting layer \(i \) and \(i + 1 \).

Let \(l_i = l_i^x + l_i^y \) denote the total number of edges in layer \(i \) for a net, where \(l_i^x \) and \(l_i^y \) denote the number of edges in the \(x\)- and \(y\)-directions, respectively. Furthermore, let \(n_i \) denote the number of vias connecting layers \(i \) and \(i + 1 \). Then, we may write (7) as

\[
C = \sum_i c_i^x l_i^x + c_i^y l_i^y + c_i^v n_i. \tag{11}
\]

Since the failure cost function is specific to some material, we assume that for each layer \(i \) a failure cost function according to (6) is specified, i.e., \(F = \alpha_i b_i + \beta i l_i + \gamma_i n_i + \delta_i \alpha_i \). Then, combining the conventional cost function of (11) with the failure cost function according to (8) yields

\[
C = \sum_i (c_i^x + \rho_i \beta_i) l_i^x + (c_i^y + \rho_i \beta_i) l_i^y + (c_i^v + \rho_i \gamma_i) n_i + \rho_i \alpha_i b_i + \rho_i \delta_i \alpha_i. \tag{12}
\]

Since the cost of vias are not influenced by any existing wiring pattern, we may discard vias from the following discussion, and set the cost of a via in layer \(i \) to \(c_i^v + \rho_i \gamma_i \).

Assume that \(\rho \) is specified for each layer according to \(\rho_i = s \sigma_i \). Furthermore, assume that the circuit is maximally sparse, i.e., \(s = 1 \), implying that \(\rho_i = \sigma_i \). Since the circuit is maximally sparse, we want to minimize bridges/overlap.

In Fig. 5, a net \(N \) exists in the routing space. Connecting point \(A \) and point \(B \), we want the net to follow variant 2 instead of 1, because the critical area for bridges is minimal for variant 2. Using (12) and assuming the length of the net in the \(x\)-direction is given by \(l_T \), the cost of both variants are given by

\[
C_1 = (c_i^x + \sigma_i \beta_i) l_T + \sigma_i \alpha_i b_i
\]

\[
C_2 = (c_i^x + \sigma_i \beta_i) l_T + 2(c_i^y + \sigma_i \beta_i)
\]

using \(b = l_T \) for variant 1 and \(b = 0 \) for variant 2. Since we prefer variant 2 to variant 1, we demand that \(C_1 > C_2 \) and derive a lower bound for \(\sigma_i \), i.e.,

\[
\sigma_i > \frac{2c_i^x}{\alpha_i l_T - 2\beta_i}, \tag{13}
\]

Similarly, for vertical wires we derive

\[
\sigma_i > \frac{2c_i^y}{\alpha_i l_T - 2\beta_i}. \tag{14}
\]

For overlap we may derive the same functions, only substituting \(b_i \) for \(\alpha_i \), i.e.,

\[
\sigma_i > \frac{2c_i^y}{b_i l_T - 2\beta_i} \quad \text{and} \quad \sigma_i > \frac{2c_i^x}{b_i l_T - 2\beta_i}. \tag{15}
\]

Combining (13)–(15), and setting \(\sigma_i \) to the maximum lower bound yields

\[
\sigma_i = \frac{2 \max(c_i^x, c_i^y)}{l_T \min(\alpha_i, \delta_i) - 2\beta_i}. \tag{16}
\]

As can be seen from (16), \(\sigma_i \) depends on both the cost information per layer and the failure parameters specific to each layer. Parameter \(l_T \) may be seen as a threshold net length. If the length by which two nets are in parallel (or overlap) exceeds this threshold, we demand that one of the nets will take a detour as shown in Fig. 5.

VI. COMPUTING NEW EDGE COST

A procedure is given in this section to determine the final cost of an edge (see Algorithm 1); to be able to do this, the notion of surrounding edges is introduced. For each edge \(e \in E \) in the \(x\)- or \(y\)-directions, four surrounding edges are identified, denoted as \(b_i, b_o, a_i, \) and \(a_o \) as indicated in Fig. 4(b). The edges \(b_i \) and \(b_o \) lying in the same layer as edge \(e \), form
the possible bridging edges, while \(\alpha \) and \(\beta \), lying in the upper and lower layers, respectively, form possible overlap edges.

Procedure: determine_edge_cost

```plaintext
begin if \( dir = \uparrow \) then \( \lambda := c^{d\uparrow} + \rho_{i} \gamma_{i} \); else \( \lambda := \sum_{i} c^{d\downarrow} + \rho_{i} \beta_{i} \); if \( b_{i} \) is active then \( \lambda := \lambda + \rho_{i} \alpha_{i} \); if \( b_{i} \) is active then \( \lambda := \lambda + \rho_{i} \alpha_{i} \); if \( o_{i} \) is active then \( \lambda := \lambda + \rho_{i} \beta_{i} \); if \( o_{i} \) is active then \( \lambda := \lambda + \rho_{i} \beta_{i-1} \); \( \lambda \); return \( \lambda \);
```

Algorithm 1: Determination of the New Edge Cost

In the above procedure, \(i \) is the index of the layer in which edge \(e \) lies, and \(dir \) denotes the direction of the edge, being either \(x, y \), or \(v \). No special actions are taken for vias; if the edge represents a via from layer \(i \) to layer \(i+1 \), the cost \(\lambda \) is set to \(c^{d\uparrow} \). The final cost is influenced by their surrounding active edges for all other edges. The edge \(e \) is assigned the original cost \(c^{d\uparrow} + \rho_{i} \beta_{i} \), plus a cost for each active surrounding edge. The latter depends on the relative position of the surrounding edge with respect to edge \(e \). It is easy to see that this procedure assigns the original edge cost if \(s = 0 \), implying \(\rho_{i} = 0 \), for all \(i \).

The final edge cost depends entirely on the active edges by which it is surrounded, and therefore may change during routing. To avoid changes in cost due to interaction with already routed segments of the same net, it is assumed that an edge is activated only after all terminals of a net are connected. Notice that the above procedure takes constant time to determine the cost of an edge. Therefore, the run time complexity of the original maze router is not influenced by this new cost function.

VII. EXPERIMENTS

The routing approach in which the layout failure mechanism is taken into account has been implemented in the GAS sea of gates layout system [11], using the multiterminal maze router of [3]. To test the real effect of our new routing strategy, 20 different circuits have been laid out. Except for mult8 and primes9, all circuits are taken from the MCNC '91 logic synthesis benchmark set. The scales of the layouts range from 150 to 5000 transistors, while their numbers of nets range from 100 to 3500. After placement is finished for each circuit, the sparsity of a layout can be obtained according to (9). Basic information about the benchmark layouts as well as their sparsities is shown in Table I.

All benchmark circuits are routed using the detailed router of the GAS system. To compare the results achieved by the newly proposed cost function, each circuit is laid out twice, once using the conventional routing cost function and once using the new routing cost function. Routing is performed using three layers: a polysilicon layer \(ps \), and two metal layers \(in \) and \(ins \). The original edge costs are set according to \(c^{d\uparrow}_{ps} = 20 \), \(c^{d\uparrow}_{in} = 3 \), \(c^{d\downarrow}_{in} = 10 \), \(c^{d\downarrow}_{ins} = 8 \), and \(c^{d\downarrow}_{ins} = 2 \), imposing a vertical–horizontal–vertical (VHV) routing style. Without loss of generality, the parameters \(\alpha, \beta, \gamma, \delta \) are set to 1, and \(\rho \) is set to 7. Consequently, for each of the three layers \(\sigma \) can be obtained, i.e., \(\sigma_{ps} = 8 \), \(\sigma_{in} = 4 \), and \(\sigma_{ins} = 3 \).

The run times are presented for both runs of the router, respectively, using the conventional routing cost function and the new routing cost function (Table I). Experiments were done on a HP735. On average run time increases by 21.4%. It is clear that this increase in run time comes from the determination of the edge cost during routing. However, this determination still takes constant time, and thus the complexity of the routing algorithm is not changed.

The EDAM system [13] is used to obtain data concerning the failure probability of both layouts. According to (1), the failure probability of a layout largely relies on the values of parameters \(F_{m} \) and \(X_{o} \), which are process-environment dependent. Thus, probability computation will not make sense without accurate values for these parameters. In this paper, we make the simplification of computing the layout sensitivity instead of the failure probability, because it is believed that a low layout sensitivity implies a small failure probability. A defect size of 4 \(\mu m \) is chosen to evaluate the critical areas of the benchmark layouts, whose feature size is scaled down to \(2 \mu m \). Therefore, the defect size is large enough to reflect meaningful layout sensitivities.

<table>
<thead>
<tr>
<th>Circuit</th>
<th># nets</th>
<th># nets</th>
<th>s (%)</th>
<th>runtime (sec)</th>
<th>runtime (sec)</th>
<th>runtime (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{n})</td>
<td>372</td>
<td>206</td>
<td>78</td>
<td>4.0</td>
<td>(\hat{n} \alpha)</td>
<td>4.9</td>
</tr>
<tr>
<td>(\hat{n} \beta)</td>
<td>4954</td>
<td>2203</td>
<td>48</td>
<td>706.9</td>
<td>873.8</td>
<td>14.2</td>
</tr>
<tr>
<td>(\hat{n} \gamma)</td>
<td>410</td>
<td>290</td>
<td>77</td>
<td>11.4</td>
<td>11.5</td>
<td>1.5</td>
</tr>
<tr>
<td>(\hat{n} \delta)</td>
<td>504</td>
<td>267</td>
<td>76</td>
<td>14.3</td>
<td>14.8</td>
<td>17.5</td>
</tr>
<tr>
<td>(\hat{n} \eta)</td>
<td>446</td>
<td>242</td>
<td>78</td>
<td>11.7</td>
<td>13.9</td>
<td>18.8</td>
</tr>
<tr>
<td>(\hat{n} \theta)</td>
<td>328</td>
<td>182</td>
<td>80</td>
<td>7.8</td>
<td>9.6</td>
<td>25.1</td>
</tr>
<tr>
<td>(\hat{n} \iota)</td>
<td>1206</td>
<td>641</td>
<td>57</td>
<td>77.6</td>
<td>90.8</td>
<td>17.0</td>
</tr>
<tr>
<td>(\hat{n} \kappa)</td>
<td>429</td>
<td>86</td>
<td>8.0</td>
<td>10.7</td>
<td>10.7</td>
<td>33.7</td>
</tr>
<tr>
<td>(\hat{n} \lambda)</td>
<td>332</td>
<td>181</td>
<td>80</td>
<td>4.1</td>
<td>4.8</td>
<td>17.1</td>
</tr>
<tr>
<td>(\hat{n} \mu)</td>
<td>658</td>
<td>350</td>
<td>71</td>
<td>2.0</td>
<td>2.5</td>
<td>25.0</td>
</tr>
<tr>
<td>(\hat{n} \nu)</td>
<td>425</td>
<td>53</td>
<td>20.2</td>
<td>24.5</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>(\hat{n} \xi)</td>
<td>564</td>
<td>316</td>
<td>78</td>
<td>15.3</td>
<td>19.8</td>
<td>16.3</td>
</tr>
<tr>
<td>(\hat{n} \nu)</td>
<td>1566</td>
<td>837</td>
<td>76</td>
<td>37.5</td>
<td>45.1</td>
<td>20.3</td>
</tr>
<tr>
<td>(\hat{n} \xi)</td>
<td>572</td>
<td>428</td>
<td>86</td>
<td>8.2</td>
<td>9.7</td>
<td>18.3</td>
</tr>
<tr>
<td>(\hat{n} \omega)</td>
<td>2112</td>
<td>1167</td>
<td>62</td>
<td>200.3</td>
<td>234.2</td>
<td>15.8</td>
</tr>
<tr>
<td>(\hat{n} \rho)</td>
<td>146</td>
<td>87</td>
<td>80</td>
<td>1.1</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>(\hat{n} \sigma)</td>
<td>547</td>
<td>290</td>
<td>75</td>
<td>6.0</td>
<td>7.8</td>
<td>30.0</td>
</tr>
<tr>
<td>(\hat{n} \tau)</td>
<td>250</td>
<td>123</td>
<td>72</td>
<td>9.0</td>
<td>10.5</td>
<td>16.7</td>
</tr>
<tr>
<td>(\hat{n} \upsilon)</td>
<td>455</td>
<td>345</td>
<td>75</td>
<td>5.6</td>
<td>7.5</td>
<td>30.4</td>
</tr>
<tr>
<td>(\hat{n} \phi)</td>
<td>245</td>
<td>177</td>
<td>84</td>
<td>6.0</td>
<td>7.6</td>
<td>26.7</td>
</tr>
</tbody>
</table>

Table I: Circuit Statistics and Runtimes

The critical areas with respect to the four types of faults are computed for each circuit. The changes in the critical areas as well as the layout sensitivities (\(\Delta L S \)) are presented in Table II. From the data, it may be concluded that for all benchmark layouts the critical areas for one layer bridge faults (type OE) decrease 22.6% on average, while the critical areas with respect to one layer open faults only increase 2.5% on average. The critical areas for inter-layer faults, i.e., type IE faults and type IM faults, change very slightly. For the IE faults, this is because via-minimization is already considered in the original cost function. Therefore, the number of vias will slightly increase since the weight of a via is relatively small in
TABLE II
ANALYSIS RESULTS

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Change of crit. area (%)</th>
<th>New Cost function (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alc2</td>
<td>-23.2</td>
<td>3.9</td>
</tr>
<tr>
<td>avex3</td>
<td>-16.4</td>
<td>0.2</td>
</tr>
<tr>
<td>mpla</td>
<td>-23.3</td>
<td>0.6</td>
</tr>
<tr>
<td>ds1</td>
<td>-22.3</td>
<td>0.3</td>
</tr>
<tr>
<td>elg</td>
<td>-24.4</td>
<td>1.6</td>
</tr>
<tr>
<td>d17</td>
<td>-20.0</td>
<td>3.8</td>
</tr>
<tr>
<td>hsk82</td>
<td>-22.1</td>
<td>2.1</td>
</tr>
<tr>
<td>r3</td>
<td>-13.8</td>
<td>0.7</td>
</tr>
<tr>
<td>s3p1</td>
<td>-30.2</td>
<td>2.5</td>
</tr>
<tr>
<td>spri</td>
<td>-27.6</td>
<td>3.6</td>
</tr>
<tr>
<td>int</td>
<td>-38.2</td>
<td>4.5</td>
</tr>
<tr>
<td>man2</td>
<td>-26.7</td>
<td>4.8</td>
</tr>
<tr>
<td>nul8</td>
<td>-21.4</td>
<td>2.9</td>
</tr>
<tr>
<td>o04</td>
<td>-14.2</td>
<td>6.3</td>
</tr>
<tr>
<td>pr01d9</td>
<td>-16.1</td>
<td>8.5</td>
</tr>
<tr>
<td>n01d8</td>
<td>-15.5</td>
<td>9.5</td>
</tr>
<tr>
<td>r084</td>
<td>-25.2</td>
<td>10.0</td>
</tr>
<tr>
<td>s0a</td>
<td>-24.3</td>
<td>1.8</td>
</tr>
<tr>
<td>sw</td>
<td>-23.4</td>
<td>3.6</td>
</tr>
<tr>
<td>vgl2</td>
<td>-17.8</td>
<td>4.3</td>
</tr>
</tbody>
</table>

The total effect of the new routing strategy is shown in the last column in Table II. According to the data, we find that the layout sensitivities can be decreased 6.4% on average, if the failure probability is taken into account in the routing procedure.

Fig. 6 shows the sensitivities of the two different layouts per design: the white bars represent the sensitivities of the layouts made by the original router and the black bars indicate the sensitivities of the layouts made by the new routing module.

To give an indication of the effect the new cost function on layout, a snapshot is taken from the layout of benchmark circuit apla. Fig. 7 shows the layout obtained using the conventional cost function and Fig. 8 shows the layout after the new cost function is used. Clearly, the wiring on all three routing layers is spread more uniform over the available area, and the amount of overlap between wires on different layers is less in Fig. 8. Both the number of vias and the net length increase slightly for Fig. 8.

VIII. CONCLUSIONS

A novel routing strategy producing layouts that are less susceptible to spot defects has been presented. Based on the analysis of spot defects, the four types of the main random disturbance in IC processes are modelled. A formula indicating the failure probabilities of these faults is derived. Combining the failure cost function with the conventional cost function, a new cost function for the general routing problem is devised. By using this new cost function, a good tradeoff between the minimization of the total net length and the maximization of the manufacturability of a layout can be obtained. The experimental data show that the layout sensitivities can be significantly decreased by the proposed routing approach even for very dense circuits, while the layout areas are kept the same.

REFERENCES

Ed P. Huijbregts was born on December 4, 1965, in Breda, The Netherlands. He received the M.S. degree in electronic engineering from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 1989. From 1989 to 1994 he worked towards a Ph.D. degree in the Design Automation Section at the Eindhoven University of Technology, Eindhoven, The Netherlands. His work there included the development of placement and routing tools for flexible macros. He joined Philips Research Laboratories, Eindhoven, The Netherlands, in February 1994, where he holds the position of research scientist. He is currently working on power estimation tools for VLSI; his interests are in the areas of VLSI design and layout, and applied graph theory.

Hua Xue received the B.S., M.S., and Ph.D. degrees in electronic engineering from the Fudan University, China in 1985, 1988, and 1991, respectively. He worked on the PANDA project in the Beijing IC Design Center from 1988 to 1989. From 1991 to 1992, he was a lecturer at the Electronics Engineering Department of Fudan University, where he worked on the development of a performance-driven gate array layout system. From 1992 to 1994, he was a research fellow at the Design Automation Section at Eindhoven University of Technology, The Netherlands. He joined Xilinx Inc., San Jose, CA, in 1994, where he is a senior software engineer. His work there included realistic fault analysis and IC test strategy. His current research interests include logic synthesis and performance-driven technology mapping.

Jochen A. G. Jess was born on April 13, 1935, in Dortmund, Germany. He received the M.S. degree from the Rheinisch-Westfälische Technische Hochschule Aachen, Germany, 1960 and the Ph.D. degree from the Aachen University of Technology, Germany in 1963. From 1963 to 1968 he was a research staff member at the Institut für Nachrichtensysteme, Kalsruhe University of Technology. From 1968 to 1969 he was a Visiting Professor at the Department of Electrical Engineering, University of Maryland, College Park, Maryland. From 1969 to 1971 he was a senior staff member at the Kalsruhe University of Technology. Since 1971 he has been Professor and Head of the Design Automation Section at the department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. His current interests are in the design and design automation of integrated circuits, in particular layout design, logic design, design of architectures and formal verification. He is co-author of more than 75 papers. He is chairman of the European Design and (Design) Automation Association (EDAA) and served as program chairperson of ICCAD93.