A SHORT AND ELEMENTARY PROOF OF THE MAIN
BAHADUR–KIEFER THEOREM

BY JOHN H. J. ELMAHLL
Eindhoven University of Technology

A short proof of the lower bound in the strong version of the famous
Theorem 1A in Kiefer (1970) on the Bahadur–Kiefer process is presented.
The proof is elementary and, in particular, does not use strong approxima-
tions.

Let \(U_1, U_2, \ldots \) be a sequence of independent uniform-(0,1) random variables
and, for each \(n \in \mathbb{N} \), let

\[
F_{n}(t) = \frac{1}{n} \sum_{i=1}^{n} 1_{[0,1]}(U_{i}), \quad 0 \leq t \leq 1,
\]

be the empirical distribution function at stage \(n \). The uniform empirical
process will be written as

\[
a_{n}(t) = n^{1/2}(F_{n}(t) - t), \quad 0 \leq t \leq 1; \quad \alpha_{n}(t) = 0 \text{ for } t < 0 \text{ or } t > 1.
\]

Also, for each \(n \in \mathbb{N} \),

\[
Q_{n}(t) = \inf\{s : F_{n}(s) \geq t\}, \quad 0 < t \leq 1, \quad Q_{n}(0) = 0,
\]

denotes the empirical quantile function, and we write

\[
\beta_{n}(t) = n^{1/2}(Q_{n}(t) - t), \quad 0 \leq t \leq 1,
\]

for the corresponding uniform quantile process. The so-called Bahadur–Kiefer
process is defined by

\[
R_{n}(t) = a_{n}(t) + \beta_{n}(t), \quad 0 \leq t \leq 1.
\]

This process is introduced in Bahadur (1966); in Kiefer (1970, Theorem 1A)
the “in-probability-analogue” of the following statement is proved:

\[
\lim_{n \to \infty} \frac{n^{1/4} \|R_{n}\|}{(\log n)^{1/2} \|a_{n}\|^{1/2}} = 1 \quad \text{a.s.,}
\]

where \(\|f\| = \sup_{0 \leq t \leq 1} |f(t)| \) for any real-valued function \(f \) on \([0,1]\). In the
latter paper a proof of (1) itself is claimed but not presented. However, it is
proved in Shorack (1982) that, indeed, the expression on the left in (1) (with
lim replaced by lim sup) is not larger than 1, almost surely (note that
\(\|a_{n}\| = \|\beta_{n}\| \)), whereas in a recent paper by Deheuvels and Mason (1990) it is
established that the same expression is not smaller than 1, almost surely.
The short and elegant proof in Shorack (1982) is based on the Kiefer process
strong approximation of α_n, but in Shorack and Wellner [(1986), pages
590–591] a similar, direct proof of the “upper-bound part” is given. The
ingenious and generally applicable proof of the “lower-bound part” [which
finally led to a complete proof of (1)] in Deheuvels and Mason (1990) is very
technical; moreover, it is again based on a strong approximation of α_n.

It is the purpose of this note to give a new, short proof of the lower-bound
part of (1). That is, we will prove that

$$\liminf_{n \to \infty} \frac{n^{1/4}}{(\log n)^{1/2}} \|R_n\| \|\alpha_n\|^{1/2} \geq 1 \text{ a.s.}$$

Our proof is rather easy and not based on strong approximations. It uses as
tools the following well-known facts on empirical and quantile processes,
although most of them are not required at their full strength.

Fact 1 [Mogul’skii (1979)]. We have

$$\liminf_{n \to \infty} (\log \log n)^{1/2} \|\alpha_n\| = \frac{\pi}{8^{1/2}} \text{ a.s.}$$

Fact 2 (Easy). We have

$$\|\beta_n + \alpha_n \circ Q_n\| = n^{-1/2} \text{ a.s.}$$

Fact 3 [Kiefer (1970)]. We have

$$\limsup_{n \to \infty} n^{1/4} (\log n)^{-1/2} (\log \log n)^{-1/4} \|R_n\| = 2^{-1/4} \text{ a.s.}$$

Define the oscillation modulus of α_n by

$$\omega_n(a) = \sup_{t-s \leq a \leq t \leq 1} |\alpha_n(t) - \alpha_n(s)|, \quad 0 < a \leq 1;$$

let $\{a_n\}_{n=1}^\infty$ be a sequence of positive numbers with $a_n \downarrow 0$ and $na_n \uparrow$.

Fact 4 [Mason, Shorack and Wellner (1983)]. If $\log(1/a_n)/\log \log n \to c \in [0, \infty)$, then

$$\limsup_{n \to \infty} \frac{\omega_n(a_n)}{a_n \log \log n}^{1/2} = (2(1+c))^{1/2} \text{ a.s.}$$

Fact 5 [Stute (1982)]. If $\log(1/a_n)/\log \log n \to \infty$ and $na_n/\log n \to \infty$, then

$$\lim_{n \to \infty} \frac{\omega_n(a_n)}{(a_n \log(1/a_n))^{1/2}} = 2^{1/2} \text{ a.s.}$$
FACT 6 [Mallows (1968)]. If \((N_1, \ldots, N_k), k \in \mathbb{N}\), has a multinomial distribution with parameters \(m\) and \(p_1, \ldots, p_k\), where \(m \in \mathbb{N}\) and \(p_1, \ldots, p_k\) are nonnegative with \(\sum_{i=1}^k p_i = 1\), then, for all \(\lambda_1, \ldots, \lambda_k\),

\[
P(N_1 \leq \lambda_1, \ldots, N_k \leq \lambda_k) \leq \prod_{i=1}^k P(N_i \leq \lambda_i).
\]

FACT 7 [Kolmogorov (1929)]. Let \(m \in \mathbb{N}\) and \(t \in (0, \frac{1}{2})\). Then for every \(\delta > 0\) there exist \(K_1, K_2 \in (0, \infty)\) such that, for \(K_1 t^{1/2} \leq \lambda \leq K_2 m^{1/2} t\),

\[
P(\alpha_n(t) > \lambda) \geq \exp\left(-\frac{(1 + \delta) \lambda^2}{2t(1-t)}\right).
\]

FACT 8 [Dvoretzky, Kiefer and Wolfowitz (1956) and Massart (1990)]. Let \(n \in \mathbb{N}\). Then, for all \(\lambda \geq 0\),

\[
P(\|\alpha_n\| \geq \lambda) \leq 2 \exp(-2\lambda^2).
\]

PROOF OF (2). Let \(I\) denote the identity function on \([0, 1]\). First we will show that, as \(n \to \infty\),

\[
\beta_n + \alpha_n \circ \left(I - \frac{\alpha_n}{n^{1/2}}\right) = o\left((\log n)^{3/4} (\log \log n)^{1/8} n^{-3/8}\right) \quad \text{a.s.}
\]

To prove (9), first observe that by (4) and \(Q_n = I + \beta_n/n^{1/2}\) we have that

\[
\left\|\beta_n + \alpha_n \circ \left(I + \frac{\beta_n}{n^{1/2}}\right)\right\| = n^{-1/2} \quad \text{a.s.}
\]

Now using (5) and (7) yields (9). Observe that it immediately follows from (9) and (3) that for a proof of (2) it is sufficient to show that

\[
\liminf_{n \to \infty} \frac{n^{1/4}}{\left(\log n\right)^{1/2}} \frac{\|\alpha_n \circ \left(I - \alpha_n/n^{1/2}\right) - \alpha_n\|}{\|\alpha_n\|^{1/2}} \geq 1 \quad \text{a.s.}
\]

Set, for \(0 \leq t \leq 1\),

\[
\bar{\alpha}_n(t) = \begin{cases}
\alpha_n(t), & \text{if } |\alpha_n(t)| > \frac{1}{\log n} \\
1/\log n, & \text{if } |\alpha_n(t)| \leq \frac{1}{\log n} \end{cases}
\]

Define the following grid on \([0, 1] \): \(t_{i,n} = i/\lfloor \log n \rfloor, i = 0, 1, \ldots, \lfloor \log n \rfloor\), where \(\lfloor x \rfloor\) denotes the integer part of \(x \in \mathbb{R}\). From (3) and (6) we have that

\[
\lim_{n \to \infty} \frac{\max_{0 \leq i \leq \lfloor \log n \rfloor} |\bar{\alpha}_n(t_{i,n})|}{\|\bar{\alpha}_n\|} = 1 \quad \text{a.s.}
\]
Moreover, from (6), (7) and (3), it follows that
\[
\lim_{n \to \infty} \frac{n^{1/4}}{(\log n)^{1/2}} \left[\max_{0 \leq i \leq \log n - 1} \sup_{t_{i,n} \leq t \leq t_{i+1,n}} \left| \alpha_n \left(t - \frac{\bar{\alpha}_n(t_{i,n})}{n^{1/2}} \right) - \alpha_n \left(t - \frac{\alpha_n(t)}{n^{1/2}} \right) \right| \right] \leq \left((1 - \varepsilon) \max_{0 \leq i \leq \log n} |\bar{\alpha}_n(t_{i,n})| \log n \right)^{1/2}.
\]

Hence, instead of proving (10), it suffices to prove that
\[
\liminf_{n \to \infty} \frac{n^{1/4}}{(\log n)^{1/2}} \left[\max_{0 \leq i \leq \log n - 1} \sup_{t_{i,n} \leq t \leq t_{i+1,n}} \left| \alpha_n \left(t - \frac{\bar{\alpha}_n(t_{i,n})}{n^{1/2}} \right) - \alpha_n(t) \right| \right] \geq 1 \quad \text{a.s.}
\]

Using the Borel–Cantelli lemma, a proof of (11) is established if we show that, for all \(\varepsilon \in (0, 1) \), \(\sum_{n=3}^{\infty} PA_n < \infty \), where
\[
A_n = \left\{ n^{1/4} \max_{0 \leq i \leq \log n - 1} \sup_{t_{i,n} \leq t \leq t_{i+1,n}} \left| \alpha_n \left(t - \frac{\bar{\alpha}_n(t_{i,n})}{n^{1/2}} \right) - \alpha_n(t) \right| \leq \left((1 - \varepsilon) \max_{0 \leq i \leq \log n} |\bar{\alpha}_n(t_{i,n})| \log n \right)^{1/2} \right\}.
\]

Write
\[
C_n = C_n(c_{1,n}, c_{2,n}, \ldots, c_{[\log n] - 1,n}) = \{ \alpha_n(t_{i,n}) = c_{i,n}, 1 \leq i \leq [\log n] - 1 \},
\]
c_{i,n} \in [-\log n, \log n] and \(c_{i,n} \) is such that \(nt_{i,n} + n^{1/2} c_{i,n} \in (0, 1, \ldots, n) \) and such that \(nt_{i,n} + n^{1/2} c_{i,n} \) is nondecreasing in \(i \) (observe that \(PC_n > 0 \)). Set
\[
\bar{c}_n = \left(\max_{1 \leq i \leq [\log n] - 1} |c_{i,n}| \right) \vee \left(\frac{1}{\log n} \right),
\]
and, on \(C_n \), let \(t_n \) be the smallest \(t_{i,n}, 0 \leq i \leq [\log n] \), such that \(|\bar{\alpha}_n(t_{i,n})| = \bar{c}_n \); write \(d_n = \alpha_n(t_n) \) and \(\bar{d}_n = \bar{\alpha}_n(t_n) \); set \(t'_n = t_n + 1/\log n \) and \(d'_n = \alpha_n(t'_n) \). Now we have
\[
P(A_n|C_n) \leq P \left\{ n^{1/4} \sup_{v - u = \bar{c}_n/n^{1/2}} \sup_{t_n \leq u \leq v \leq t'_n} |\alpha_n(v) - \alpha_n(u)| \right\}
\[
\leq \left((1 - \varepsilon) \bar{c}_n \log n \right)^{1/2} \left(C_n \right).
\]

Write \(m_n = n/[\log n] + n^{1/2}(d'_n - d_n) \) and note that, on \(C_n \), \(m_n = n(F'_n(t'_n) - F_n(t_n)) \); obviously \(|m_n| [\log n]/n - 1 \leq 2(\log n)^2 n^{-1/2} \to 0 \) as \(n \to \infty \). Now it is
not hard to see that, on C_n, the process $\tilde{\alpha}_{m_n}$ defined by

$$\tilde{\alpha}_{m_n}(s) = \left(\frac{n}{m_n} \right)^{1/2} \left\{ \alpha_n \left(t_n + \frac{s}{\log n} \right) - \left(d_n(1 - s) + d'_n s \right) \right\}, \quad 0 \leq s \leq 1,$$

is a uniform empirical process based on m_n observations. Hence the right-hand side of (12) can be written as

$$P \left[n^{1/4} \sup_{0 \leq r \leq s \leq 1} \left\{ \frac{m_n}{n} \right\}^{1/2} \left\{ \tilde{\alpha}_{m_n}(s) - \tilde{\alpha}_{m_n}(r) \right\} \right.$$

$$+ \bar{d}_n[\log n](d_n - d'_n)n^{-1/2} \leq (1 - \varepsilon)\bar{e}_n \log n \right\}^{1/2} \right].$$

Now observe that

$$\frac{|n^{1/4} \bar{d}_n[\log n](d_n - d'_n)n^{-1/2}|}{(\bar{e}_n \log n)^{1/2}} \leq 2\bar{e}_n^{1/2}(\log n)^{3/2} n^{-1/4} \leq 2(\log n)^{2} n^{-1/4} \to 0 \text{ as } n \to \infty.$$

Therefore, for large n, the expression in (13) is bounded from above by

$$P \left[n^{1/4} \left(\frac{m_n}{n} \right)^{1/2} \sup_{0 \leq r \leq s \leq 1} \left\{ \tilde{\alpha}_{m_n}(s) - \tilde{\alpha}_{m_n}(r) \right\} \right.$$

$$\leq \left(1 - \frac{1}{2} \varepsilon \right)^{\bar{e}_n \log n} \right\]^{1/2} \right),$$

which by Fact 6 is less than or equal to

$$P \left[n^{1/4} \left(\frac{m_n}{n} \right)^{1/2} \bar{e}_n \log n \right]^{1/2} \left\{ \alpha_n \left[\log n \right] / n^{1/2} \right\} \leq \left(1 - \frac{1}{2} \varepsilon \right)^{\bar{e}_n \log n} n^{1/2}(\log n)^{3/2}.$$

It is easy to check that, for large n, Fact 7 applies to the probability in (15). This yields, with $\delta = \varepsilon/4$, the following upper bound for the expression in (15):

$$\left(1 - n^{-1 - (1 - \varepsilon/4)/2} \right)^{n^{1/2}(\log n)^{3/2}} \leq \exp \left(\frac{-n^{\varepsilon/8}}{(\log n)^2} \right) \leq \frac{1}{n^2}.$$
We are now ready to complete the proof. Combining (12)–(16), we have

\[P(A_n|C_n) \leq 1/n^2 \quad (n \text{ large}). \]

Set \(D_n = (\|\alpha_n\| > \log n) \) and note that (8) implies that \(PD_n \leq 1/n^2 \quad (n \geq 4) \). Hence, for large \(n \),

\[
PA_n \leq P(A_n \cap D_n^c) + PD_n \leq (\sup^* P(A_n|C_n)) + PD_n
\]

(17)

\[
\leq \frac{1}{n^2} + \frac{1}{n^2} = \frac{2}{n^2},
\]

where \(\sup^* \) denotes the supremum over all \(C_n \) as defined before. Now, of course, \(\sum_{n=3}^{\infty} PA_n < \infty \) because of (17). This proves (11) and hence (2). \(\square \)

REFERENCES

