SYNDROME DECODING
OF CONVOLUTIONAL CODES

by

J.P.M. Schalkwijk en A.J. Vinck
Syndrome decoding
of convolutional codes

by

J.P.M. Schalkwijk

and

A.J. Vinck

TH-Report 74-E-54
October 1974

ISBN 90 6144 054
Syndrome decoding of convolutional codes

J.P.M. Schalkwijk, senior member, IEEE, and A.J. Vinck

October 1974

The authors are with the Department of Electrical Engineering,
University of Eindhoven, Eindhoven, The Netherlands

Abstract

The classical Viterbi decoder recursively finds the trellis path (codeword) closest to the received data. Given the received data the syndrome decoder first forms a syndrome, instead. Having found the syndrome, that only depends on the channel noise, a recursive algorithm like Viterbi's determines the noise sequence of minimum Hamming weight that can be a possible cause of this syndrome. Given the estimate of the noise sequence one derives an estimate of the original data sequence. Whereas, the bit error probability of the syndrome decoder is no different from that of the classical Viterbi decoder, the syndrome decoder can be naturally implemented using a read only memory (ROM), thus obtaining a considerable saving in hardware.
I. INTRODUCTION

The principle of syndrome decoding of convolutional codes will be explained using the binary code generated by the encoder of Fig. 1.

![Diagram of encoding and syndrome forming for a R=1 code]

The additions in Fig. 1 are modulo-2, and all binary sequences \(b_0, b_1, b_2, \ldots \) are represented as power series \(b(\alpha) = b_0 + b_1\alpha + b_2\alpha^2 + \ldots \).

The encoder has connection polynomials \(C_1(\alpha) = 1 + \alpha^2 \), and \(C_2(\alpha) = 1 + \alpha + \alpha^2 \).

Hence, the encoder outputs are \(C_1(\alpha)x(\alpha) \) and \(C_2(\alpha)x(\alpha) \). The syndrome \(z(\alpha) \) only depends on \(n_1(\alpha) \) and \(n_2(\alpha) \), i.e. not on the data sequence \(x(\alpha) \), for
\[z(\alpha) = C_2(\alpha)[C_1(\alpha)x(\alpha)+n_1(\alpha)]+C_1(\alpha)[C_2(\alpha)x(\alpha)+n_2(\alpha)] = C_2(\alpha)n_1(\alpha)+C_1(\alpha)n_2(\alpha) \] (1)

Having formed the syndrome \(z(\alpha) \), the next section describes a recursive algorithm like Viterbi's [1] to determine the noise sequence pair \([\hat{n}_1(\alpha), \hat{n}_2(\alpha)] \) of minimum Hamming weight that can be a possible cause of this syndrome.

Given the estimate \([\hat{n}_1(\alpha), \hat{n}_2(\alpha)] \) of the noise sequence pair one derives an estimate \(\hat{x}(\alpha) \) of the original data sequence \(x(\alpha) \) as follows. For a noncatastrophic code \(C_1(\alpha) \) and \(C_2(\alpha) \) are relatively prime. Hence, by Euclid's algorithm [2] there exist polynomials \(d_1(\alpha) \) and \(d_2(\alpha) \) such that
\[d_1(\alpha)C_1(\alpha)+d_2(\alpha)C_2(\alpha)=1. \]
For the example of Fig. 1 we have \(d_1(\alpha)=1+\alpha \), \(d_2(\alpha)=\alpha \). We receive the sequence pair
\[y_i(\alpha) = C_i(\alpha)x(\alpha)+n_i(\alpha) ; \ i=1,2 \] (2)
and from the estimate
\[\hat{x}(\alpha) = d_1(\alpha)[y_1(\alpha)+\hat{n}_1(\alpha)]+d_2(\alpha)[y_2(\alpha)+\hat{n}_2(\alpha)] \] (3)
Note that if the noise sequence estimate \([\hat{n}_1(\alpha), \hat{n}_2(\alpha)] \) is correct we have
\[y_i(\alpha)+\hat{n}_i(\alpha) = C_i(\alpha)x(\alpha)+n_i(\alpha)+\hat{n}_i(\alpha) = C_i(\alpha)x(\alpha) ; \ i=1,2 \] and, hence,
\[\hat{x}(\alpha) = d_1(\alpha)C_1(\alpha)x(\alpha)+d_2(\alpha)C_2(\alpha)x(\alpha) = x(\alpha) \]
Note that (3) for the estimate \(\hat{x}(\alpha) \) of the data sequence \(x(\alpha) \) can be rewritten as
\[\hat{x}(\alpha) = [d_1(\alpha)y_1(\alpha)+d_2(\alpha)y_2(\alpha)]*\omega(\alpha), \] (4)
where
\[\omega(\alpha) = d_1(\alpha)\hat{n}_1(\alpha)+d_2(\alpha)\hat{n}_2(\alpha) \] (5)
The term in square brackets in (4) can be computed directly from the received data using very simple circuitry. As there is no need to distinguish between pairs \([\hat{\alpha}_1(\alpha), \hat{\alpha}_2(\alpha)]\), and \([\hat{\alpha}_1(\alpha), \hat{\alpha}_2(\alpha)']\) that lead to the same value for \(\omega(\alpha)\) in (5), the algorithm to be discussed in the next section computes \(\omega(\alpha)\) directly.
II. THE ALGORITHM

In Fig. 2 we have redrawn the syndrome former. As, according to (1), the syndrome $z(\alpha)$ only depends on the noise pair $[n_1(\alpha), n_2(\alpha)]$ all other binary sequences have been omitted from Fig. 2. For minimum distance decoding we are now presented with the following problem. Given the syndrome $z(\alpha)$ determine the noise pair $[\hat{n}_1(\alpha), \hat{n}_2(\alpha)]$ of minimum Hamming weight that can be a cause of this syndrome.

At first sight the state diagram of the syndrome former of Fig. 2 has $2^4 = 16$ states and, hence, is more complicated than the state diagram used to implement the classical Viterbi decoder [1] that has only $2^2 = 4$ states. However, a closer inspection of Fig. 2 reveals that the syndrome former has also $2^2 = 4$ states. In general, for an encoder with v memory stages the syndrome former has 2^v states just like the state diagram used to implement the classical Viterbi decoder. This can be seen as follows. Writing
each successive binary coefficient pair \([n_{1k}, n_{2k}], k=0,1,2,\ldots\), can be arbitrarily replaced by its modulo-2 complement \([\bar{n}_{1k}, \bar{n}_{2k}]\) without altering the syndrome \(z(a)\). Hence, of the \(2^v\) different memory contents of Fig. 2, \(2^v\) are equivalent as far as \(z(a)\) is concerned leaving \(2^v/2^v = 2^v\) different states. Fig. 3 gives the state diagram of the syndrome former of Fig. 2. Solid transitions in Fig. 3 correspond to \(z_k = 0\) and dashed transitions to \(z_k = 1, k=0,1,2,\ldots\). Next to each transition one finds the value of \(\tilde{n}_{1k}, \tilde{n}_{2k}; \omega_k, k=0,1,2,\ldots\). Fig. 4 gives the \(k\)-th, \(k=0,1,2,\ldots\), section of the trellis diagram that corresponds to the state diagram of Fig. 3. The algorithm that determines \(\omega(a)\) according to (5) now operates as follows. With each state in Fig. 4 we associate a metric \(M_j(k), j=0,1,2,3, k=0,1,2,\ldots\), that equals the minimum Hamming weight of a path, \([\tilde{n}_1(a), \tilde{n}_2(a)](j)\), leading from state \(j=0\) at time \(k=0\) to that particular
Fig. 4. The k-th section of the trellis diagram, $k=0,1,2,...$

state. This path has a solid or a dashed k-th branch, $0 \leq k < k-1$, according to whether $z_k = 0$ or $z_k = 1$, respectively. The metric $M_j(k+1)$ at time $k+1$ can be determined recursively, i.e.

\[
\begin{align*}
M_0(k+1) &= z_k \min [M_0(k), M_1(k)+2] + z_k \min [M_2(k), M_3(k)+2] \quad (7a) \\
M_1(k+1) &= z_k \min [M_2(k)+1, M_3(k)+1] + z_k \min [M_0(k)+1, M_1(k)+1] \quad (7b) \\
M_2(k+1) &= z_k \min [M_0(k)+2, M_1(k)] + z_k \min [M_2(k)+2, M_3(k)] \quad (7c) \\
M_3(k+1) &= z_k \min [M_2(k)+1, M_3(k)+1] + z_k \min [M_0(k)+1, M_1(k)+1] \quad (7d)
\end{align*}
\]

Given the value of z_k, i.e. $z_k = 0$ or $z_k = 1$, each $(k+1)$-state can be reached from two k-states. For each of these two k-states add to the metric, the Hamming weight of the transition, i.e. of $[\hat{n}_{k1}, \hat{n}_{k2}]$, to the particular $(k+1)$-state. The minimum of the two values thus obtained is $M_j(k+1)$. The
transition associated with the minimum value is called the "survivor". In case of a tie, choose the survivor at random among the two candidates. The survivor for \((k+1)\)-state \(j=0,1,2,3\) can be specified by the associated \(k\)-state \(j(k)=0,1,2,3\). Going back from a \((k+1)\)-state each time choosing the survivor we obtain the path, \([\hat{n}_1(\alpha), \hat{n}_2(\alpha)]^{(j)}\), \(j=0,1,2,3\), of minimum Hamming weight leading to that particular \((k+1)\)-state. The coefficients \(\omega(j), \omega(j), \ldots, \omega(j)\), associated with the path, \([\hat{n}_1(\alpha), \hat{n}_2(\alpha)]^{(j)}\), \(k-D+1 \leq i \leq k\), of minimum Hamming weight are stored in the path register for the \(j\)-th state, \(j=0,1,2,3\). If

\[
M_{(j_0)}^{(k+1)} = \min_j M_j^{(k+1)}
\]

we set

\[
\omega_{k-D+1}^{j_0} = \omega_{k-D+1}^{(j_0)}
\]

If more than one \(j_0\) satisfies (8) we make an arbitrary selection among the candidates. The longer the path register length \(D\) the smaller the resulting bit error probability, \(P_b\). Increasing \(D\) beyond \(5(v+1)\) does not lead to an appreciable further decrease in \(P_b\). We have done detailed calculations concerning the relationship between \(D\) and \(P_b\), which will be published shortly. The next section is concerned with the practical implementation of the syndrome decoder.
III. IMPLEMENTATION

Using (7) we construct Table I. The first column just numbers the rows of the table. The second column lists all possible metric combinations $M_0(k), M_1(k), M_2(k), M_3(k)$ at time k. As only the differences between the metrics of a quadruple matter we subtract from each member of a quadruple of metrics the minimum value of the quadruple, i.e. all quadruples of metrics in Table I have one or more zeros. Column 3 and 4 apply to the case that $z_k=0$ and columns 5 and 6 to the case that $z_k=1$. Columns 3 and 5 list the survivors $j_0(k), j_1(k), j_2(k), j_3(k)$, and columns 4 and 6 the new metrics $M_0(k+1), M_1(k+1), M_2(k+1), M_3(k+1)$ as given by (7). If there is a choice of survivors the candidates are placed within parentheses in the survivor columns.

<table>
<thead>
<tr>
<th>Row number</th>
<th>Old metrics</th>
<th>$z_k=0$ survivors</th>
<th>New metrics</th>
<th>$z_k=1$ survivors</th>
<th>New metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0(2,3) 1 (2,3)</td>
<td>0101</td>
<td>2 (0,1)3(0,1)</td>
<td>0101</td>
</tr>
<tr>
<td>1</td>
<td>0101</td>
<td>0 2 1 2</td>
<td>0111</td>
<td>2 0 3 0</td>
<td>0111</td>
</tr>
<tr>
<td>2</td>
<td>0111</td>
<td>0(2,3) 1 (2,3)</td>
<td>0212</td>
<td>2 0 3 0</td>
<td>0000</td>
</tr>
<tr>
<td>3</td>
<td>0212</td>
<td>0 2 (0,1) 2</td>
<td>0222</td>
<td>2 0 3 0</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0222</td>
<td>0(2,3)(0,1)(2,3)</td>
<td>0323</td>
<td>2 0 3 0</td>
<td>1010</td>
</tr>
<tr>
<td>5</td>
<td>0010</td>
<td>0 3 1 3</td>
<td>0101</td>
<td>2 (0,1)3(0,1)</td>
<td>1101</td>
</tr>
<tr>
<td>6</td>
<td>0323</td>
<td>0 2 0 2</td>
<td>0323</td>
<td>2 0 3 0</td>
<td>1020</td>
</tr>
<tr>
<td>7</td>
<td>1010</td>
<td>0 3 1 3</td>
<td>1101</td>
<td>2 1 3 1</td>
<td>1101</td>
</tr>
<tr>
<td>8</td>
<td>1101</td>
<td>0 2 1 2</td>
<td>0000</td>
<td>2 (0,1)3(0,1)</td>
<td>0212</td>
</tr>
<tr>
<td>9</td>
<td>1020</td>
<td>0 3 1 3</td>
<td>1101</td>
<td>(2,3) 1 3 1</td>
<td>2101</td>
</tr>
<tr>
<td>10</td>
<td>2101</td>
<td>0 2 1 2</td>
<td>1000</td>
<td>2 1 3 1</td>
<td>0212</td>
</tr>
<tr>
<td>11</td>
<td>1000</td>
<td>0(2,3) 1 (2,3)</td>
<td>1101</td>
<td>2 1 3 1</td>
<td>0101</td>
</tr>
</tbody>
</table>

TABLE I. Metric transitions
Table I contains more information than is necessary for the actual implementation of the syndrome decoder. As explained in section II knowledge of the successive survivors for each state, together with the index j_0 of the minimum within each new quadruple of metrics suffices to determine the key sequence $\omega(a)$ of (5). Hence, we omit the quadruples of metrics from Table I and store the resulting Table II in a ROM. The

<table>
<thead>
<tr>
<th>old ROM-address</th>
<th>old ROM-address</th>
<th>$z_k=0$ survivors</th>
<th>new ROM-address</th>
<th>$z_k=1$ survivors</th>
<th>new ROM-address</th>
<th>$z_k=1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_k=0$</td>
<td>$z_k=1$</td>
<td>j_0</td>
<td>j_0</td>
<td>j_0</td>
<td>j_0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(2,3)</td>
<td>1</td>
<td>(0,2)</td>
<td>2</td>
<td>(0,1)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0(2,3) 1 (2,3)</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0 (0,1,2,3)</td>
</tr>
<tr>
<td>3</td>
<td>0 2 (0,1) 2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5 (0,1,3)</td>
</tr>
<tr>
<td>4</td>
<td>0(2,3)(0,1)(2,3)</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>7 (1,3)</td>
</tr>
<tr>
<td>5</td>
<td>0 3 1 3</td>
<td>1</td>
<td>(0,2)</td>
<td>2</td>
<td>(0,1) 3(0,1)</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>0 2 0 2</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>9 (1,3)</td>
</tr>
<tr>
<td>7</td>
<td>0 3 1 3</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1 3 1</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>0 2 1 2</td>
<td>0</td>
<td>(0,1,2,3)</td>
<td>2</td>
<td>(0,1) 3(0,1)</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>0 3 1 3</td>
<td>8</td>
<td>2</td>
<td>(2,3) 1 3 1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0 2 1 2</td>
<td>11</td>
<td>(1,2,3)</td>
<td>2</td>
<td>1 3 1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>0(2,3) 1 (2,3)</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1 3 1</td>
<td>1 (0,2)</td>
</tr>
</tbody>
</table>

TABLE II. Contents of the ROM

operation of the core part of the syndrome decoder can now be explained using the block diagram of Fig. 5. Assume that at time k the ROM address register, AR, contains $(AR)=7$ and the ROM data register, DR, contains $(DR)=(ROM,7)$. Let $z_k=1$. Note, see Fig. 4, that $\omega_k(0)=\omega_k(1)=0$, $\omega_k(2)=\omega_k(3)=1$ independent of $k=0,1,2,...$, i.e. always fill the left
most stages of the four path registers, PR\textsubscript{0}[0:0], PR\textsubscript{1}[0:0], PR\textsubscript{2}[0:0], PR\textsubscript{3}[0:0], with 0011, respectively. Then according to row 7 and column 5 of Table II, or according to the contents, (DR), of the DR, replace

\[\text{PR}_0[1:D-1] + \text{CONTENTS} \text{ PR}_2[1:D-1] \]
\[\text{PR}_1[1:D-1] + \text{CONTENTS} \text{ PR}_1[1:D-1] \]
\[\text{PR}_2[1:D-1] + \text{CONTENTS} \text{ PR}_3[1:D-1] \]
\[\text{PR}_3[1:D-1] + \text{CONTENTS} \text{ PR}_1[1:D-1]. \]

The right most digit, PR\textsubscript{0}[D-1:D-1], PR\textsubscript{1}[D-1:D-1], PR\textsubscript{2}[D-1:D-1], PR\textsubscript{3}[D-1:D-1], of all four path registers is fed to the selector, see Fig. 5, that determines \(w_{k-D+1} \) according to (9) using the entry in row 7 and column 7, i.e. \(j_0 = 2 \), of Table II which can also be found in the DR. To complete the \(k \)-th cycle of the syndrome decoder, set \((AR) = 8 \) and read \(\text{DR+}(\text{ROM},8) \).

The ROM-decoder for the code of Fig. 1 has been realized in hardware using path registers of length \(D=11 \). The solid line in Fig. 6 gives the
measured bit error probability, P_b, as a function of the transition probability, p, of the binary symmetric channel. The dashed curve is an upper bound [3] on the bit error probability, P_b.

Fig. 6. Bit error rate P_b versus channel transition probability p.

IV. CONCLUSIONS

This paper describes a syndrome decoder for convolutional codes. The recursive algorithm that forms the core part of the decoder can be naturally implemented with a ROM. Using the same type of I.C.'s the syndrome decoder requires less than one third of the hardware that is necessary to implement the classical Viterbi decoder. A program has been developed that computes the contents of the ROM for an arbitrary rate $\frac{1}{2}$ binary convolutional code. This program enables us to quickly design an extremely efficient minimum distance decoder.

ACKNOWLEDGEMENT

The authors want to thank L.J.A.E. Rust for his help with the hardware realization. Particularly, for the idea of using a ROM which led to a great reduction in the number of I.C.'s.
REFERENCES

EINDHOVEN UNIVERSITY OF TECHNOLOGY
THE NETHERLANDS
DEPARTMENT OF ELECTRICAL ENGINEERING

Reports:

1) Dijk, J., M. Jeuken and E.J. Maanders
AN ANTENNA FOR A SATELLITE COMMUNICATION GROUND STATION
ISBN 90 6144 001 7

2) Veefkind, A., J.H. Blom and L.Th. Rietjens
THEORETICAL AND EXPERIMENTAL INVESTIGATION OF A NON-EQUILIBRIUM
to the Symposium on a Magnetohydrodynamic Electrical Power

3) Boom, A.J.W. van den and J.H.A.M. Melis
A COMPARISON OF SOME PROCESS PARAMETER ESTIMATING SCHEMES.
TH-report 68-E-03. September 1968. ISBN 90 6144 003 3

4) Eykhoff, P., P.J.M. Ophey, J. Severs and J.O.M. Oome
AN ELECTROLYTIC TANK FOR INSTRUCTIONAL PURPOSES REPRESENTING THE
ISBN 90 6144 004 1

5) Vermij, L. and J.E. Daalder
ENERGY BALANCE OF FUSING SILVER WIRES SURROUNDED BY AIR.

6) Houwen, J.W.M.A. and P. Massee
MHD POWER CONVERSION EMPLOYING LIQUID METALS. TH-report 69-E-06.
February 1969. ISBN 90 6144 006 8

7) Heuvel, W.M.C. van den and W.F.J. Kersten
VOLTAGE MEASUREMENT IN CURRENT ZERO INVESTIGATIONS. TH-report 69-E-07.
September 1969. ISBN 90 6144 007 6

8) Vermij, L.
ISBN 90 6144 008 4

9) Westenberg, J.Z.
SOME IDENTIFICATION SCHEMES FOR NON-LINEAR NOISY PROCESSES.

10) Koop, H.E.M., J. Dijk and E.J. Maanders
ISBN 90 6144 010 6

11) Veefkind, A.
NON-EQUILIBRIUM PHENOMENA IN A DISC-SHAPED MAGNETOHYDRODYNAMIC

13) Teuling, D.J.A.
ELECTRONIC IMAGE MOTION COMPENSATION IN A PORTABLE TELEVISION CAMERA.
14) Lorencin, M.
AUTOMATIC METEOR REFLECTIONS RECORDING EQUIPMENT. TH-report 70-E-14.
November 1970. ISBN 90 6144 014 9

15) Smets, A.J.
THE INSTRUMENTAL VARIABLE METHOD AND RELATED IDENTIFICATION SCHEMES.

16) White, Jr., R.C.
A SURVEY OF RANDOM METHODS FOR PARAMETER OPTIMIZATION. TH-report

17) Talmon, J.L.
APPROXIMATED GAUSS-MARKOV ESTIMATIONS AND RELATED SCHEMES. TH-report
71-E-17. February 1971. ISBN 90 6144 017 3

18) Kalásek, V.
MEASUREMENT OF TIME CONSTANTS ON CASCADE D.C. ARC IN NITROGEN.

19) Hosselet, L.M.L.F.
OZONBILDUNG MITTELS ELEKTRISCHER ENTLADUNGEN. TH-report 71-E-19.
March 1971. ISBN 90 6144 019 X

20) Arts, M.G.J.
ON THE INSTANTANEOUS MEASUREMENT OF BLOODFLOW BY ULTRASONIC MEANS.

21) Roer, Th.G. van de
NON-ISO THERMAL ANALYSIS OF CARRIER WAVES IN A SEMICONDUCTOR.

22) Jeuken, P.J., C. Huber and C.E. Mulders
SENSING INERTIAL ROTATION WITH TUNING FORKS. TH-report 71-E-22.
September 1971. ISBN 90 6144 022 X

23) Dijk, J. and E.J. Maanders
APERTURE BLOCKING IN CASSEGRAIN ANTENNA SYSTEMS. A REVIEW.

24) Kregting, J. and R.C. White, Jr.
ISBN 90 6144 024 6

THE MULTIPLE DIPOLE MODEL OF THE VENTRICULAR DEPOLARISATION.

26) Bremmer, H.
A MATHEMATICAL THEORY CONNECTING SCATTERING AND DIFFRACTION PHENOMENA,
ISBN 90 6144 026 2

27) Bokhoven, W.M.G. van
10 December 1970. ISBN 90 6144 027 0

28) Boechoten, F.
ISBN 90 6144 028 9

30) Kessel, C.G.M. van and J.W.M.A. Houben

31) Veefkind, A.

32) Daalder, J.E. and C.W.M. Vos

33) Daalder, J.E.

34) Huber, C.

35) Bastian, C. et al.

36) Blom, J.A.

37) Lier, M.C. van and R.H.J.M. Otten

38) Andriessen, F.J., W. Boerman and I.F.E.M. Holtz

40) Goes, W.P.

41) Damen, A.A.H.
42) Dijk, G.H.M. van
THEORY OF GYRO WITH ROTATING GIMBAL AND FLEXTURAL PRIOTS.

43) Breimer, A.J.
ON THE IDENTIFICATION OF CONTINUOUS LINEAR PROCESSES. TH-report

44) Lier, M.C. van and R.H.J.M. Otten
ISBN 90 6144 044 0

45) Bastian, C. et al.
EXPERIMENTS WITH A LARGE SIZED HOLLOW CATHODE DISCHARGE FED WITH

46) Roer, Th.G. van de
ANALYTICAL SMALL-SIGNAL THEORY OF BARITT DIODES. TH-report 74-E-46.
May 1974. ISBN 90 6144 046 7

47) Leliveld, W.H.
ISBN 90 6144 047 5

48) Dansen, A.A.H.
SOME NOTES ON THE INVERSE PROBLEM IN ELECTRO CARDIOGRAPHY. TH-report

49) Meeberg, L. van de

50) Poel, A.P.M. van der
A COMPUTER SEARCH FOR GOOD CONVOLUTIONAL CODES. TH-report 74-E-50.
October 1974. ISBN 90 6144 050 3

51) Sampic, G.
THE BIT ERROR PROBABILITY AS A FUNCTION OF PATH REGISTER LENGTH IN THE

52) Schalkwijk, J.P.M.
ISBN 90 6144 052 1

53) Stapper, M.
MEASUREMENT OF THE INTENSITY OF PROGRESSIVE ULTRASONIC WAVES BY MEANS
ISBN 90 6144 053 X

54) Schalkwijk, J.P.M. and A.J. Vinck
SYNDROME DECODING OF CONVOLUTIONAL CODES. TH-report 74-E-54.
November 1974. ISBN 90 6144 054 8

55) Yakimov, A.
FLUCTUATIONS IN IMPATT-DIODE OSCILLATORS WITH LOW q-SECTORS.