MACROMOLECULAR EFFECTS ON THE OXIDATION OF THIOLS CATALYZED BY COBALT(II)PHTHALOCYANINE-TETRA-SODIUM SULFONATE ATTACHED TO POLYAMINES AND POLYAMMONIUM SALTS

PROEFSCHRIFT

TER VERKLARING VAN DE GRAAD VAN DOCTOR IN DE TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCH HOEGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. S. T. M. ACKERMANS, VOOR EEN COMMISSIE AANGEWIEZEN DOOR HET COLLEGE VAN DEKANEN IN HET OPENBAAR TE VERDEFIEN OP DINSDAG 11 SEPTEMBER 1984 TE 16:00 UUR

DOOR

WILFRIDUS MARIA BROUWER

GEBORNE TE ZEIST
Dit proefschrift is goedgekeurd door de
promotoren: Prof. Dr. Ir. A.L. Germaan
Prof. Dr. R. Prins
CONTENTS

Introduction 1

Chapter I Viscometric Characterization of a Polymeric Catalyst for the Autoxidation of Thiols 8

Chapter II Autoxidation of Thiols with Cobalt(II)Phthalocyanine-Tetrasodium Sulfonate, Attached to Poly(vinyllamine)
1. pH and Viscometric Effects 10

Chapter III Autoxidation of Thiols with Cobalt(II)Phthalocyanine-Tetrasodium Sulfonate, Attached to Poly(vinyllamine)
2. Kinetic measurements 17

Chapter IV Autoxidation of Thiols with Cobalt(II)Phthalocyanine-Tetrasodium Sulfonate, Attached to Poly(vinyllamine)
3. Dependence on molecular weight 29

Chapter V Copolymers of Vinyllamine and Vinylalcohol by Acid Hydrolysis of Poly(N-vinyl-tert-buty carbamate-co-Vinylacetate)
Evaluation of reactivity ratios 42

Chapter VI Autoxidation of Thiols with Cobalt(II)Phthalocyanine-Tetrasodium Sulfonate, Attached to Poly(vinyllamine)
4. Influence of base density within the polymeric ligand 57
Chapter VII Autoxidation of Thiols with Cobalt(II)Phthalocyanine-Tetrasodium Sulfonate, Attached to Poly(vinylamine)
5. Effect of thiol variation and surfactant

Chapter VIII The Promoting Role of Polycations in the Cobalt(II)Phthalocyanine-Tetrasodium Sulfonate Catalysed Thiol Oxidation

Chapter IX Autoxidation of Thiols with Cobalt(II)Phthalocyanine-Tetrasodium Sulfonate, Attached to Poly(vinylamine)
6. Immobilized catalysts by cross-linking of poly(vinylamine)

Summary

Samenvatting

Curriculum Vitae

Dankwoord
INTRODUCTION

General Introduction

According to Ostwald's definition in 1901\(^1\), a catalyst changes the rate of a chemical reaction, without itself being consumed or altering the position of the final thermodynamic equilibrium. For this reason, rate enhancing catalysts are widely used in chemical processes in industry, enabling more efficient processes and offering new ways of preparing high quality products. Also in living organisms biocatalysts, then called enzymes, are operative and their high specificity and selectivity are subject to many investigations.

Polymers or macromolecules are long, thread-like molecules which in solution often exist as loosely wound coils, with average dimensions in the colloidal size range\(^2\). In special cases, e.g. when the macromolecules bear charges, specific chain interactions may occur and rod-like or helix-like conformations become possible\(^3\). Polymers may occur naturally, e.g. starch and proteins, or may be synthesized at a laboratory or industrial scale. Through special synthetic methods, developed in polymer chemistry, copolymers can be prepared with well-known composition and microstructure, tailor-made for widely different purposes.

Sometimes polymers possess catalytic activity in certain chemical reactions and are therefore called polymeric catalysts although this term may not be in complete accordance with Ostwald's definition, as was shown by Lee for polyelectrolyte catalysed reactions\(^4\).

A well-known polymeric catalyst is polyvinylimidazole in the hydrolysis of microphytosterols\(^5\). Here the cooperating, monomeric repeating units were found responsible for the catalytic action. In other polymeric catalysts, specific catalytic activity is obtained by
the introduction of catalytically active functionalities either during polymerization, e.g. active monomers (6), or afterwards, e.g. transition metals in polymer metal complexes (7,8).

Often enzymes are essentially polymeric catalysts, although the latter term is commonly reserved for synthetic polymeric catalysts. It is therefore not surprising that many synthetic polymeric catalysts fulfil one or more criteria characteristic of enzyme catalysis (9): e.g. specificity, rate enhancement, saturation kinetics similar to Michaelis-Menten kinetics (10) and multi-functional catalysis. Some polymeric catalysts possess high intrinsic catalytic activity, comparable to enzymes and are called synergists (from synthetic enzymes).

Hydrophobic interactions, electrostatic interactions or both are of prime importance in substrate binding, while the availability of suitable, generally base or acid groups in the appropriate ionic forms and orientations are necessary for catalysis. In order to allow more technical application, soluble polymeric catalysts need to be immobilized on solid supports, thus facilitating separation of the catalysts from the reaction solution and enabling their reuse. Many reviews on this topic appeared during the recent years (7,11-14).

Closely related to polymeric catalysis is the catalytic action of soaps in solution, i.e. micellar catalysis (15). Very recently an example of mixed polymeric and micellar catalysis, so-called polymer-surfactant complex catalysis was reported (16). These rather new possibilities in polymeric catalysis may be of great importance to industry, where progressively more continuous emulsions will replace the conventional reaction systems in which organic solvents are used.

The polymeric catalysts presented in this thesis are capable of oxidizing thiols with molecular oxygen to disulfides in aqueous media, exhibiting high selectivity.

Thiol catalysis plays an important role in oil sweetening used in the refining industry for rendering thiols harmless (19), the latter being invariably present in hydrocarbon distillates. Sometimes thiols
are deliberately used in industrial processes, e.g. the addition of
dodecanethiol as a chain length modifier in emulsion polymerization,
but removal from the end product is often desirable because of their
bad smell. In solving such problems highly effective thiol oxidation may
offer a useful approach. Finally, the formation and role of disulfide
linkages in biological systems also stresses the importance of research
on thiol oxidation (18).

All catalysts used in the present investigations contain the cata-
lytically active cobalt(II)phthalocyanine-tetrasodium sulfonate (abbrev.:
CoPc(NaSO₄)₄), a water soluble derivative of cobaltphthalocyanine.
The latter is a thiol oxidation catalyst in the presence of base (19),
and has a porphyrin-like structure similar to that of all kinds of
biological redox systems such as haemoglobin and vitamin B₁₂. At present
CoPc is being used in the oil refining industry.

From earlier work of Zwart (20) and Schotten (21) in the Catalysis
and Polymer Chemistry departments of our institute, it appeared that
attachment of this organometallic compound to a basic polymer resulted in
a large enhancement of the catalytic activity (22). It was suggested
that prevention of dimerization of the CoPc(NaSO₄)₄ catalyst and enrich-
ment of the weakly acidic substrate in the basic coils accounted for
the enhanced catalytic activity of these multi-functional catalysts.

All polymeric ligands used in the investigations belong to the
group of water soluble polyamines and polyquaternized ammonium salts,
which are at present, apart from their known industrial importance (23),
of great interest for their sometimes peculiar physicochemical behavior
(24-27), their chemo-therapeutic properties (28,29) and their propensity
to form polymer-metal chelates exhibiting oxygen binding ability (30).
All these properties are undoubtedly related to the positive net charge
these polymers bear specially at neutral pH. This polyelectrolyte
character, as will appear from this thesis, also plays an important role
in the polymer catalyzed thiol oxidation.
Aim and outline of this thesis

The aim of this thesis is to study the promoting effects of the polymeric ligand on the catalytic activity, including the commonly observed problem of partial deactivation when active polymeric catalysts are immobilized, and thiol oxidation in surfactant containing systems. The latter become of industrial importance.

The polymeric catalyst, mainly used in the investigations described in this thesis is CoPc(NaSO₃)₄ attached to poly(vinylamine). Overall coil dimensions and the effect of thiol addition hereon have been investigated by viscometry (Chapter I). Also the incorporation of the CoPc(SO₃)₄⁻ ion in the polymer was investigated. In Chapter II the pH dependence of the catalytic activity as well as its viscometric behavior is presented and discussed. Kinetic measurements on the oxidation of 2-mercaptoethanol are presented in Chapter III and the enzyme-like behavior of the polymeric catalyst is established. The molecular weight of poly(vinylamine) has been varied and its effect on catalytic activity and activation parameters has been investigated and discussed (Chapter IV). Copolymers of nearly randomly distributed vinylamine and vinylalcohol were synthesized (Chapter V) and used as polymeric ligands for CoPc(NaSO₃)₄ as described in Chapter VI, in order to obtain insight into the relationship between catalytic activity and amine group density in the polymeric ligands.

In Chapter VII the investigation has been extended to other thiols including the hydrophobic dodecanethiol and the use of surfactant in the thiol oxidation catalysis has been introduced. Features and drawbacks are discussed. In Chapter VIII other polycationic catalysts are investigated. Here the concepts basically developed in the Chapters II, III, VI and VII accounting for the enhanced polymer catalyst activity, will appear to have a more general applicability.

Finally, in Chapter IX, matrices of cross-linked poly(vinylamine) have been used as insoluble polymeric supports for CoPc(NaSO₃)₄. The effects
of several experimental parameters were measured, from which suggestions for further improvement of the immobilized catalyst systems have been deduced.

Chapters I-IX, corresponding to references 31-39, respectively, have been published already or will be published soon.

The co-authors, Ir. P.A.M. Teas and Ir. T.J.W. de Weerd have had a major part in the performance of the experiments as described in Chapter IX.

References

(1) W. Ostwald, *Phys. Z.* 2 (1902), 313
(2) P.J. Flory, *Principles of Polymer Chemistry*, Ithaka, Cornell University Press, 1953
(10) L. Michaelis and M.L. Menten, *Biochem. Z.*, 59 (1913), 333
(15) J.H. Fendler and E.L. Fendler, Catalysis in Micellar and Macro-
Phys.-Bio, 102 (1983), 417
(17) A.M. Oswald and T.J. Wallace in N. Kharsch and C.L. Meyers (eds)
The Chemistry of Organic Sulphur Compounds, Vol 2, Pergamon,
London, 1966, ch. 8
(18) P.C. Jocelyn, Biochemistry of the SH group, Academic Press,
London, 1972
(20) J. Zwart, PhD Thesis, University of Technology, Eindhoven, The
Netherlands, 1978
The Netherlands, 1981
(25) L.A. Weiss, J. Barkley and T.S. Prince, Macromolecules, 14
(1981), 546
Phys.-Bio, 93 (1974), 171
(28) P. Ferruti in E.J. Goethals (ed), Polymers in Aqueous and Ammonium
solt, Pergamon, Oxford, 1980
(29) H. Morison and M. Kotman in A. Rembaum and L. Sálygy (eds),
Polyelectrolytes and their applications, D. Reidel, Dordrecht,
The Netherlands, 1975, p. 187
Commun., 2 (1982), 161,693
(37) W.M. Brouwer, P. Piet and A.L. German, J. Mol. Catal., accepted
(38) W.M. Brouwer, P. Piet and A.L. German, J. Mol. Catal., submitted
Chapter 1

Viscometric characterization of a polymeric catalyst for the autoxidation of thiols

W. M. Brouwer, P. Piet and A. L. Kramer

Laboratory of Polymer Chemistry, Emrathame University of Technology, P.O. Box 613, 5000 MB Eindhoven, The Netherlands

(Authors 6 October 1982; revised 1 December 1982)

A polymeric catalyst for the oxidation of thiols to disulphides by molecular oxygen was prepared by mixing aqueous solutions of cobalt(NI)tetraethyldiamine tetra-sodiumdiphosphate (Co(II)Na(4)S(4)O(6)P(12)) and poly(vinylamine) (PVAm). The incorporation of the Co(II)S(4)O(6)P(12) into the polymer was investigated by viscometry. Conformational changes in the polymer upon addition of substrate were studied. On a single crystal reaction site for the Co(II)S(4)O(6)P(12) was proposed to be occupied by a polymeric ligand and the addition of substrate to the polymeric catalyst resulted in a large extension of the polymer coil.

Keywords: Thiol autoxidation, polymeric catalyst, poly(vinylamine), conformational change, viscometric characterization.

INTRODUCTION

Polymeric catalysts often show an enhanced activity. Consequently, attention has been paid to the specific role of the polymer chain in this process. The apparent analogy with enzymeric reactions has stimulated attempts to gain a knowledge about enzyme action from polymer catalysis studies. In this work, PVAm catalysts were tested with various substrates, and the results obtained by measuring a change in the rate of reaction. In our laboratory a study is in progress on the catalytic autoxidation of thiols with molecular oxygen by polymeric catalysts. The viscometric characterization of the polymer catalyst is the subject of this report.

EXPERIMENTAL

PVAm HCl was synthesized by the Smit method with some minor modifications. PVAm was precipitated from aqueous solutions of PVAm HCl through an Amicon ultrafiltration cell. The poly(vinylamine) concentration was determined by calorimetric titration with HCl solution (Merck). Temperature control was performed with a Julabo temperature control device.

Cobalt(II)tetraethyldiamine tetra-sodiumdiphosphate (Co(II)Na(4)S(4)O(6)P(12)), also known as Fisons Ltd, was synthesized according to a modification of the method by Weiß et al.5 Viscometric measurements on labeled solutions were carried out at 22°C, using a Ubbelohde viscometer (Ichimura). Measurements in the presence of TMAI 1.2 were performed in the presence of 0.1 M NaCl, pH 7. Measurements were performed under a nitrogen gas atmosphere to prevent oxidation of oxygen or sulfur dioxide. Samples were prepared using sodium sulfite, sodium thiosulfate, and sodium pyrophosphate. In these experiments, where this was added, measurements were conducted twenty minutes after addition, since small time effects were observed. All values mentioned are p.p.m.

pH 7.4

![Figure 1: Structure of Co(II)S(4)O(6)P(12)]

Figure 1: Structure of Co(II)S(4)O(6)P(12)

© 1982 Brouwer & A.M. (Ph.D.) Ltd
POLYMER COMMUNICATIONS. 1983, Vol. 24, July
The addition of salt may be expected to affect the 'double-layers' between the slightly positively charged polymer chain and the negatively charged counter-ions. As a consequence, the presence of salt and in particular those possessing a high counterion charge will diminish the double-layer repulsion between separate chain segments, causing a shrinkage of the polymer coil and a decrease in viscosity. These phenomena have been observed in the interaction between charged colloid particles.\(^5\) Upon addition of the benz-cyanoether(II-iron, in which even no complications between the central metal atoms and anionic ligands of the polymer is to be expected, the reduced viscosity of the PVAm solution shows a decrease similar to that observed in the case of addition of the cavity-charged Co(OH)\(_2\)\(^{2-}\). This is a strong indication that no multi-ligand/intramolecular clusters formation occurs after addition of Co(OH)\(_2\)\(^{2-}\) to PVAm solutions. The formation of multi-ligand complexes between multi-dentate ligands and transition metal ions will invariably be accompanied by a sharp additional decrease in viscosity, due to the construction of the polymer chain.\(^6\) Consequently, the viscosity experiments support the view that only one axial position of the central metal atom of Co(OH)\(_2\)\(^{2-}\) is involved in the coordinative interaction with PVAm.

Schuster et al.\(^4\) have performed c.a. measurements on the system Co(OH)\(_2\)-PVAm in DMSO and obtained an e.s.r. signal quite typical of 3-coordinate cobalt complexes. The present viscosity measurements completely confirm these earlier findings and provide conclusive evidence of the proposed unusual coordination.

In order to obtain a better insight into the conformational of the catalyst during reaction, we have re-synthesized the polymeric complex by monitoring the viscosity changes upon addition of substrate via 2-n-mercaptoethanol (RSH).

Because RSH is a weak acid and PVAm a polybase, a pH change of the system upon addition of RSH could be expected. Thus the pH was monitored during addition of thiol to PVAm in a separate experiment (Figure 3). The following conclusions can be drawn:

The viscosity contribution of RSH itself in aqueous solutions (marked with the asterisk) is low, as might be expected for a low molecular mass solute.

The viscosity of the PVAm solution increases dramatically upon addition of substrate (2 and 4 in Figure 3), accompanied by a distinct fall of pH. The polymer conformation is considerably affected by the pH, as reported earlier.\(^4\)

The presence of Co(OH)\(_2\)\(^{2-}\) only leads to a slightly lower (ca. 1%) viscosity curve, again indicating that no intramolecular clusters are formed.

Thus it may be concluded that during reaction the polymeric catalyst is irreversibly converted to macrocycles because the structural coordination of Co(OH)\(_2\)\(^{2-}\) to PVAm and the lower pH, caused by the presence of the thiol, are giving rise to an extended conformation.

REFERENCES

POLYMER COMMUNICATIONS, 1983, Vol. 24, July
Chapter II

Autoxidation of Thiols with Cobalt (II) Phthalocyanine-Tetra-Sodium Sulfonate, Attached to Poly(Vinylamine)

1. pH and Viscometric Effects

W.M. Brouwer, P. Pilet and A.L. Garmen

Laboratory of Polymer Chemistry, Eindhoven University of Technology,
Postbox 613, NL-5600 MB Eindhoven, The Netherlands

Summary

The oxidation of 2-mercaptoethanol with molecular oxygen in water with cobalt(II) phthalocyanine-tetra-sodium sulfonate attached to poly(vinylamine) has been investigated. Special attention was paid to the effect of pH and chain dimensions on polymer activity. The polymer catalyst possesses a large conformational freedom at neutral pH, but at higher pH a shrinkage of the polymer coil occurs and diffusional limitations cannot be excluded. The catalyst shows an enzyme-like behaviour in the autoxidation of thiol. Overall activation energies appear to decrease with increasing pH. At pH = 7.4, $E_a = 61$ kJ mol$^{-1}$, at pH = 9.4, $E_a = 9$ kJ mol$^{-1}$.

Electrostatic effects are of major importance in the chemical reactivity since they affect the local thiol-anion concentration in the close vicinity of the polymer attached oxidation sites.

Introduction

In our laboratory the autoxidation of 2-mercaptoethanol (2ME) with water soluble cobalt(II) phthalocyanine-tetra-sodium sulfonate (CoPc$\left[\text{NaS}_4\right]_4$), attached to poly(vinylamine) (PVA), has been investigated (SCHUTTEN and SMART 1979; SCHUTTEN et al. 1979).

$$\begin{align*}
4 \text{2ME} + O_2 &\xrightarrow{\text{PVA}} \text{CoPc}\left(\text{NaS}_4\right) + 2 \text{H}_2\text{O} \\
\text{PVA} &\quad \text{PVA}
\end{align*}$$

(1)

with $K = \text{H}_2\text{O}$

The cobaltphthalocyanine is an organometallic compound, consisting of cobalt(II) incorporated in a porphyrin ring. The derivative used here (CoPc$\left[\text{NaS}_4\right]_4$) carries four sulfon groups, which makes it soluble in water.

Thiol oxidation plays a role in biologic systems and is an important process in the desulfurization of oil and natural gas. It was suggested that the enhanced activity of the polymeric system in comparison with the system CoPc$\left[\text{NaS}_4\right]_4/\text{OH}^-$ in the absence of PVA mainly could be attributed to the high density of basic sites on the polymer, which increases the thiol-anion concentration, and to the polymeric coil structure, inhibiting the formation of bimolecular adducts, which are catalytically inactive (SCHUTTEN and SMART 1979; SCHUTTEN et al. 1979).

0170-0830/82/0008/0245/$01.40
From these previous investigations it appeared that addition of base affected the catalytic activity. Therefore, we have examined the specific effect of pH on the catalytic activity and on the conformation of the polymeric catalyst. For the latter purpose viscometry was used. Moreover, overall activation energies have been determined. The results might elucidate some important aspects involved in the catalytic behaviour of the polymeric catalyst.

Experiments

Chemical reagents

All solutions were prepared with distilled water. PVAmHCL was purchased from Polysciences Inc., (Warrington, U.S.A.), Mw-PVAmHCL = 50,000-160,000. Aqueous solutions of PVAm were obtained by eluting a 3 % solution of PVAmHCL through an Amberlite IRA-401 ion-exchange column. The equivalent amino concentration (c mmol) was determined by potentiometric titration with HCl solution (Merck, Titrisol ampoules) in the presence of 2 M NaCl.

Copper(II) acetate was kindly provided by Dr. T.P.M. Heenes, and was synthesised analogously to the method by Meier and Buechi (1965), as described elsewhere (Zwart et al. 1977).

2-Mercaptobenzothiazole (Merck) was distilled before use. It was stored in the dark at 0°C for periods not exceeding two weeks. All salts, mentioned in the text were p.a.

Viscosity

Viscosity measurements on filtered solutions were carried out at (25.0±0.05)°C in a Hewlett Packard automatic solution viscometer of the Ubbelohde type. All measurements were performed under a nitrogen gas atmosphere to prevent absorption of oxygen and carbon dioxide. Samples were prepared using nitrogen-purged, sealed ampoules and syringes. In those experiments where thiol was added, measurements were conducted twenty minutes after addition, since small time effects were observed.

Catalyst preparation

The catalyst was prepared by mixing aqueous solutions of PVAm and Cu(II) acetate (NaSO4). First, the solution of PVAm was added, then the solution of Cu(II) acetate (NaSO4) immediately afterwards. Then the desired pH was adjusted by addition of NaOH (0.3 M) or HCl-solution (0.01 M). The mixture was degassed twice and saturated with oxygen in twenty minutes, while stirring vigorously.

Catalytic activity measurements

Activity measurements were carried out in an all-glass double-walled, thermostated Warburg apparatus, equipped with a powerful mechanical glass-stirrer, at constant pressure (0.1 Mpa). Stirring speed was 2300 r.p.m. Although vigorous stirring appeared imperative, this stirring speed was not within a critical range, since a somewhat higher or lower stirring speed did not affect the oxygen uptake rate. Since even small amounts of salt largely affect the conformation of the polymeric catalyst in solution (see text), no buffer solutions but instead, sodium hydroxide and hydrochloric acid were used to adjust the pH. The Warburg apparatus was equipped with a
The reduced viscosity of aqueous solutions of PVA with and without thiol were determined as a function of deliberately imposed pH changes, in order to obtain a better insight in the conformation of the catalyst as a function of pH. HCl (0.01 M) and NaOH (0.3 M) were used to adjust the pH at the desired values. The results are presented in Figure 1. This figure shows that the conformation of pure PVA is drastically influenced by the pH. A maximum in viscosity is reached at pH = 6. When thiol is present, the maximum is shifted to lower pH and above pH = 7 the viscosity collapses in comparison with the behaviour of the PVA solution without thiol. The viscosity increase upon neutralization of the basic PVA solutions can be explained considering an increasing mutual repulsion of neighbouring charged groups with increasing polymer charge thus causing a more expanded conformation (TIEVESIE et al. 1965; BLOOM VAN TRESSLIONG 1970.). Although polymer charge increases continuously with lower pH (HORG VAN TRESSLIONG 1970.), polymer coil dimensions do not. The occurrence of a maximum in chain dimensions may be due to a very stiff structure at intermediate pH, a conformation stabilized by...
hydrogen bonding between neighbouring ammonium and amine groups (LEWIS et al. 1981; KOMALUK et al. 1981.) When chiol is added the viscosity of the system is somewhat higher at low pH and the maximum is shifted significantly to lower pH (Figure 1). Probably this is caused by a specific counter-ion effect. The collapse of viscosity above pH = 7 in comparison with the PVAm solution without chiol must be attributed to the increased salt concentration in the bulk (NaCl, HCl) under these conditions and is caused by the dissociation of the weakly acid PAA (pK = 9.6, COCKFORD 1972.). The latter effect will result in a shielding of the polymeric charges which in turn causes a sharp decrease in viscosity.

The slight increase in viscosity beyond pH = 9 in Figure 1 must be due to increasing salt and base concentrations, while the polymer charge is minimal. From the above it must be concluded that the polymer catalyst is most expanded at intermediate pH and in the absence of salt, but conformational freedom is lost upon addition of even small amounts of base.

Figure 2.
Catalytic activity of polymeric systems at 15, 20, 25 and 35 °C vs. pH. c-PVAm = 1.7 meq dm⁻³; c-COOPh(NASO)₄ = 1.9·10⁻⁷ mole dm⁻³. Reaction volume = 101 ml. Added thiol: 18.5 mmole. r in ml O₂/mole COOPh(NASO)₄ min.
Catalytic activity experiments

Because the solubility of the polymeric catalyst is not restricted by the pH, we were able to investigate the effect of the pH on the catalytic activity. The effect of temperature on the activity-pH plots has been determined at 15, 20, 25 and 30 °C. This is shown in Figure 2. At each temperature level a maximum in reaction rate is observed at pH 0-9, depending on temperature. Such behaviour has often been observed in enzymatic reactions and generally is explained by assuming that acid as well as basic sites are playing a role in most enzyme-substrate interaction mechanisms (HINWOOD 1961). However, our polymeric catalyst carries only basic sites, and therefore this explanation does not hold for the present system. Here polymer charge and the presence of counter-ions other than H²⁻ are considered to be important. It was reported that the charge on the polymer chain decreases with increasing pH (KLOSE UN TIECKLEUNG 1978).

Below pH = 7.4, when KCl has been added to adjust the pH, more competing counter-ions are present (i.e. Cl⁻) and the local thiol-anion concentration in the close vicinity of the polymer chain is supposed to decrease and so is the reaction rate. Beyond pH = 7.4 the thiol-anion concentration in the bulk increases considerably due to the weakly acid character of H²⁻.

A slight increase in pH above 7.4 does not necessarily mean that polymer charge decreases in the relevant catalytic systems, because ionic strength is increased by NaCl which enhances polymer charge to some extent (KLOSE UN TIECKLEUNG 1978). Thus at pH values slightly higher than 7.4 the local thiol-anion concentration near the polymer chain may be somewhat enhanced and so is the reaction rate. At still higher pH, polymer charge saturation and hydroxy-ion concentration increases and a reduction of reaction rate must be expected, although the bulk thiol-anion concentration is still increasing.

The considerations above are summarized in Table 1.

Table 1.

Summary of some important parameters in the pH-dependent behaviour of the catalytic activity.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower pH (<7.4)</th>
<th>Intermediate pH (7.4-8)</th>
<th>Higher pH (>8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer charge</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>"Strong" counter-ions other than H²⁻</td>
<td>yes (Cl⁻)</td>
<td>no</td>
<td>yes (OH⁻)</td>
</tr>
<tr>
<td>C₆H₆ in close vicinity of the polymer chain</td>
<td>*</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>C₆H₆ in the bulk</td>
<td>*</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Catalytic activity, f</td>
<td>*</td>
<td>++</td>
<td>*</td>
</tr>
</tbody>
</table>

From the above it seems that the course of the reaction rate curves can be explained in terms of a variation of the local thiol-anion concentration in the close vicinity of the polymer chain.

Further supporting evidence to this hypothesis, has been provided by the occurrence of a saturation effect in the relationship between reaction rate and thiol concentration and by the occurrence of a distinct fall in
activity upon addition of inert salt. The latter can be explained by a considerable decrease of thick-anions in the near vicinity of the polymer chain because of repulsive forces between competitive anions (Cl\(^-\)) and shielding of the chain charge.

The observed temperature dependence of the reaction rate curves in Figure 2 was a motive to determine the activation energies accurately, by measurements performed in a range chosen from Figure 2, viz. 3-45 °C at pH = 7.4, 8.75 and 9.5. Activation energies, \(E_a\), are given in Table 2.

Table 2.

Activation energies at different pH.

<table>
<thead>
<tr>
<th>pH</th>
<th>(E_a) (kJ mole(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>61 ± 7</td>
</tr>
<tr>
<td>8.75</td>
<td>19 ± 3</td>
</tr>
<tr>
<td>9.5</td>
<td>2.5 ± 2</td>
</tr>
</tbody>
</table>

In Figure 2 a shoulder appears between pH = 8.5 and 9 at lower temperatures. This peculiar behaviour may indicate that two mechanisms are operative with different activation energies and different pH optima. In earlier investigations the formation of considerable amounts of hydrogen peroxide at neutral pH was reported (SCHUPPEN and BEELENS 1960). The concentration \(H_2O_2\) decreases rapidly upon addition of small amounts of base which was attributed to a fast base catalysed reduction of the hydrogen peroxide by thiols. However, in the light of the present findings the occurrence of two pH-dependent mechanisms may also explain this phenomenon.

On the other hand, diffusion limitation may not be excluded, particularly at higher pH. In the presence of thiols, the polymer coil shrinks considerably upon addition of base (Figure 1). Therefore transport limitations of reactants or the product, which has larger dimensions, may be easily encountered. The apparent activation energy for diffusion of counter-ions and uncharged molecules in swollen resins amounts to about 20 kJ mole\(^{-1}\) (HEBRUS 1968), which is not in conflict with the present experimental observations. In order to elucidate the phenomena of the pH-dependent activation energies additional kinetic investigations are required.

Conclusions

Some final conclusions may be drawn. The polymeric catalyst exhibits an enzyme-like behaviour in the autoxidation of 2-mercaptoethanol, in contra-distinction to the system with \(CuCO_3(NH_4)\times_4\) as a catalyst in the absence of polyethers (SMANN et al. 1977). The maximum rate is reached at pH = 8-9, depending on temperature. The polymeric catalyst possesses a large conformational freedom at neutral pH and electrostatic effects are of great importance in the catalytic activity, because these effects will influence the local thiol-anion concentration in the close vicinity of the oxidation sites.

The pH-dependence of activation energies may be explained by assuming two pH-dependent mechanisms with different activation energies to occur. On the other hand the polymer coil is considerably contracted at high pH values and the occurrence of diffusion controlled reactions cannot be excluded.
Acknowledgements

The authors are indebted to Mr. R. van der Vey, Mr. F. van der Put and
Mr. D. Francois for their technical assistance.

References

(1972)
(LEHM, S.A., BEARLEY, J., St. PIERRE, T.: Macromolecules 11, 346 (1978)
SCHUTTEN, J.H., PILOT, P. and GERMAN, A.L.: Makromol. Chem. 190, 2341
(1979)
TANFORD, Ch., Physical chemistry of macromolecules, New York, John
Wiley & Sons Inc. (1961)
TETEUX, Ph., DUCOURE, C. and TETEUX, M.T.: Makromol. Chem. 86, 51
(1965)
WINTER, J., WEIDE, H.C. v/d, BROER, B., RUBENS, C., SCHUTT, G.C.A. and

Received August 20, accepted August 28, 1988
Chapter III

AUTOXIDATION OF THIOLS WITH COBALT(II) PHTHALOCYANINE TETRASODIUM SULFONATE ATTACHED TO POLY(VINYLAMINE).
2. KINETIC MEASUREMENTS

W. M. BROUWER, P. PIET and A. L. GERMAN
Laboratory of Polymer Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven (The Netherlands)
(Received March 11, 1988)

Summary

A kinetic study is presented of the autoxidation of 2-mercaptoethanol using cobalt(II) phthalocyanine tetrasodium sulfonate attached to poly(vinylamine) as a catalyst.

The main products appear to be 2,2’dithiobis(ethanol) and hydrogen peroxide; the measured oxygen consumption was found to be in balance with the theoretical one, based on the exclusive formation of these compounds. The catalytic system exhibits a large activity and Michaelis-Menten kinetics are obeyed with respect to substrate concentration and oxygen pressure. The reaction rate was first order in polymeric catalyst.

Upon addition of salt a severe decrease in activity was observed. A comparison of the activation energies in the presence and absence of salt suggests that the local thiol anion concentration in the vicinity of the oxidation sites is lowered upon salt addition. Although an entropy change cannot be excluded, this may explain the fall in reactivity.

Addition of radical scavengers also led to a decrease in the reaction rate, indicating that radicals are reaction intermediates. Overall, the polymeric catalyst exhibits an enzyme-like behaviour and resembles the catalytic action of vitamin B12 in the oxidation of thiols.

Introduction

During the past two decades much attention has been paid to the autoxidation of thiols using transition metal containing compounds as catalysts. Some of these investigations [1] originated from a wish to develop catalysts which could be used for the desulfurization of natural gas and oil. Other surveys [2, 3] dealt with the enzymatic conversion of thiols in order to clarify thiol metabolism in biological systems. It has been found that cobalt(II) phthalocyanine (CoPc) [4] in the presence of alkali is a very good catalyst for the conversion of thiols to disulfides, the alkali increasing the
concentration of thiol anions which are the reactive species in the system. In many papers emphasis was laid on reaction kinetics and re-use of the catalysts. However, large differences in kinetic behaviour were observed between homogeneous systems where CoPc derivatives in alkaline media were used as the catalyst [6, 6] and systems where CoPc was immobilized on porous solid supports [6, 7].

In our laboratory systems are being investigated where CoPc(NaSO₃)₄ (Fig. 1) is attached to basic polymers by complexation. In particular, the water-soluble poly(vinylamine) (PVAm) appears to be a very good promoter in the autoxidation of 2-mercaptoethanol (RSH) [8]. Thus, relative to the aqueous system CoPc(NaSO₃)₄/NaOH, the bifunctional polymeric system appears to be ca. 30 times more active. Our aim is to elucidate the contribution of the polymeric ligand to this increased catalytic action, and in order to achieve this systems with other basic polymers are being investigated.

We found earlier [9] that the coil conformation of the polymer prevents the formation of catalytically inactive dimeric oxo adducts of CoPc(NaSO₃)₄, and that the basic functionalities were an excellent substitute for the alkali commonly used in the homogeneous system with CoPc(NaSO₃)₄ [8]. Recently we have investigated the conformation of the polymeric catalyst during reaction and examined the influence of pH on the conformation of the polymeric catalyst and its reaction rate [10]. We now present a kinetic study of this polymeric system, the results being discussed in relation to data obtained from homogeneous and immobilized systems.

Experimental

Chemical reagents

PVAmHCl was purchased from Polysciences Inc. (Warrington U.S.A.; \(M_w(PVAm) = 5 \times 10^4\) g mol⁻¹), from viscosity experiments in water containing 0.01 N NaOH and 0.1 M NaCl [11]). Aqueous solutions of PVAm were obtained by eluting a 3% solution of PVAmHCl through an Amberlite IRA-
401 anion exchange column. The equivalent amine concentration was determined by potentiometric titration with HCl solution (Merck, Titrisol ampoules) in 2 M NaCl (p.a.). CoPc(NaSO₃)₄ (kindly provided by Dr. T.P.M. Beelen) had been synthesised by a method analogous to that of Weber and Busch [12] as described by Zwart et al. [5]. 2-Mercaptoethanol was distilled before use and stored in the dark at 5 °C for periods not exceeding two weeks. The thiol content after storage was checked by iodometric titration [13] and was found 99% pure. Distilled water was used throughout.

Catalyst preparation

The catalyst was prepared by mixing aqueous solutions of PVAm and CoPc(NaSO₃)₄, resulting in a polymer-organometal complex. The solution of PVAm was initially added to the reaction vessel and the solution of CoPc(NaSO₃)₄ immediately afterwards. The mixture was degassed twice and saturated with oxygen over a period of 20 min while stirring vigorously.

Catalytic activity measurements

The reaction rate was determined by monitoring the oxygen consumption during the oxidation reaction.

Activity measurements were carried out at constant pressure in an all-glass double-walled thermostated Warburg apparatus, equipped with a powerful mechanical glass stirrer. Oxygen pressure was adjustable. A stirring speed of 2300 r.p.m. was maintained, although this was not critical since a somewhat higher or lower stirring speed did not affect the oxygen uptake. However at oxygen uptake rates exceeding 25 - 30 ml min⁻¹, for a reaction volume of 0.1 dm³ and oxygen pressure of 35 kPa, transport limitation problems occurred.

The Warburg apparatus was equipped with a pH electrode (Radiometer Copenhagen OK 2401 B), the pH being measured 15 s after addition of thiol. Calibrated buffer solutions were employed to check that this type of electrode was not harmed by the presence of thiol. Oxygen consumption rates were measured with a digital flowmeter (Inacom Veenendaal, The Netherlands).

The reaction was started by adding the substrate, 2-mercaptoethanol, to the reaction vessel by means of a syringe. Initial reaction rates were determined as the average consumption during the first minute.

Analysis of the H₂O₂ content

The hydrogen peroxide level in the reaction mixture was analysed by iodometric titration [14].

Results and discussion

Oxygen mass balance

Earlier studies of the autoxidation of thiols [5, 15] have investigated whether disulfide was formed exclusively as the reaction product; in other
words if the conversion obeyed eqn. (4) in Scheme 1. This reaction appears to be the principal one, but in some cases \(\text{H}_2\text{O}_2 \) could be also detected in the reaction mixture [3, 5]. Thus in the system CoPe(\(\text{NaSO}_3 \))\textsubscript{4}/PVAm the existence of \(\text{H}_2\text{O}_2 \) at neutral pH was demonstrated spectrophotometrically [16].

\[
\begin{align*}
2\text{RSH} + \text{O}_2 & \rightarrow \text{RSSR} + \text{H}_2\text{O}_2 \quad (1) \\
2\text{RSH} + \text{H}_2\text{O}_2 & \rightarrow \text{RSSR} + 2\text{H}_2\text{O} \quad (2) \\
1 \cdot (2) & : 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 2\text{H}_2\text{O}_2 \quad (3) \\
1 \cdot (2) & : 4\text{RSH} + \text{O}_2 \rightarrow 4\text{RSSR} + 2\text{H}_2\text{O} \quad (4)
\end{align*}
\]

Scheme 1. Overall reactions in the oxidation of 2-mercaptoethanol.

In order to check the oxygen mass balance for the CoPe(\(\text{NaSO}_3 \))\textsubscript{4}/PVAm system, the total oxygen consumption for complete conversion, i.e. the integral of the oxygen uptake curve in Fig. 2, was measured and the peroxide content was determined iodometrically. From the weight of added substrate and from the remaining hydrogen peroxide content after oxygen consumption had stopped, i.e., after complete conversion of RSH, the corresponding moles of oxygen were calculated using eqns. (3) and (4) in succession (Scheme 1). The sum of these should be compared with the measured oxygen consumption, see Table 1. From a consideration of the stoichiometry of eqns. (3) and (4) in Scheme 1 and the results in Table 1 it appears that mainly RSSR, and to a lesser extent \(\text{H}_2\text{O}_2 \), are formed during the catalytic oxidation of RSH, the hydrogen peroxide possibly as an intermediate product.*

It has been shown [16] that, in the absence of PVAm and at neutral pH, CoPe(\(\text{NaSO}_3 \))\textsubscript{4} decomposes rather slowly in the presence of \(\text{H}_2\text{O}_2 \). As stated above, initial reaction rates have been obtained in this study from the oxygen consumption during the first minute of reaction on the basis that over such short periods of time no substantial decomposition of the catalyst will occur. However, the existence of an oxygen mass balance does not rule out the formation of very small amounts of sulfur-containing acids arising from the relatively high \(\text{H}_2\text{O}_2 \) levels during reaction. These acids were assumed to be responsible for catalyst deactivation during successive runs [16].

In some cases [5, 15] the presence of some RSH has been reported after oxygen consumption has stopped. However, in these studies, the detection of residual thiol (which has a strong smell even as extremely small traces) was not possible after cessation of the oxygen uptake. Furthermore,*

*If reaction 3 occurs more slowly than reaction 1, some \(\text{H}_2\text{O}_2 \) will remain after the thiol is converted to RSSR. At this stage it is not possible to verify whether RSSR is formed exclusively through reactions 1 and 2 proceeding consecutively or via a mechanism involving several simultaneously occurring reactions.
Fig. 2. Oxygen uptake rate \(v\) plotted against time. \(c_{\text{CoFeOOH}} = 1.32 \times 10^{-7} \text{M} \); \(c_{-\text{SH}} = 1.0 \times 10^{-2} \text{M} \); \(c_{\text{H}_2\text{O}_2}\) (added thiol) = 18.5 mmol; reaction volume = 0.101 dm\(^3\); \(T = 20.0 \pm 0.1 \text{C} \); \(pH = 7.41\); \(P_{\text{O}_2} = 100\) kPa.

TABLE 1

Oxygen mass balance in the oxidation of 2-mercaptoethanol

<table>
<thead>
<tr>
<th>Amount of product (mmol)</th>
<th>Amount of O(_2) consumed (mmol)</th>
<th>Mole fraction of O(_2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSH converted (a) 15.888</td>
<td>O(_2) (RSSR) (a/4) 4.640</td>
<td>57.3 ± 1.8(^b)</td>
</tr>
<tr>
<td>H(_2)O(_2) remaining (b) 1.807</td>
<td>O(_2) (H(_2)O(_2)) (b/2) 0.664</td>
<td>12.3 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>O(_2) (total calc.) 5.293</td>
<td>90.6 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>O(_2) (total meas.) 0.313</td>
<td>100.0</td>
</tr>
</tbody>
</table>

\(^a\) Data after complete conversion of RSH.

\(^b\) Average of four experiments; errors within 95\% confidence limit.

because of the method of analysis employed for H\(_2\)O\(_2\), any unconverted thiol would also react with iodine to yield RSSR, and thus not affect the calculated total oxygen consumption.

Effect of thiol concentration

The relationship between the reaction rate and the thiol concentration at a pH value of 7.2, a temperature of 25.0 °C and a Co/NH\(_2\) mole ratio of 3.9 \(\times\) 10\(^{-6}\) is shown in Fig. 3(a). At high concentrations a saturation effect is observed. Michaelis-Menten kinetics [17, 18] (Scheme 2) appear to be obeyed, and the rate constants \(k_2\) and \(K_m\) have been calculated from a Lineweaver–Burk plot, i.e. a double reciprocal plot of the initial reaction rate \(v\) against the initial substrate concentration [Fig. 3(b)].

From the intercept in Fig. 3(b) and the total catalyst concentration, the turn-over number of the enzyme–substrate complex, i.e. the catalytic con-
Fig. 3. (a) Reaction rate \(v \) plotted against the thiol concentration. \(c_{\text{CYP(NASU),H}} = 3.7 \times 10^{-3} \text{ M}; c_{\text{NH}_2} = 0.95 \times 10^{-3} \text{ N}; \) reaction volume = 0.105 dm\(^3\); \(T = 25.0 \pm 0.1 \) \(^\circ \text{C}; \) pH = 7.2; \(P = 81 \) kPa. The reaction rate \(v \) is expressed in mol RSH dm\(^{-3}\) s\(^{-1}\), calculated on the basis of the stoichiometry of eqn. (4). (b) Lineweaver–Burk plot. Reaction conditions as given for Fig. 3(a).

stant, can be calculated from eqn. (7) of Scheme 2 and has the value \(k_3 = 1.6 \times 10^{3} \text{ s}^{-1} \). Similarly, from the slope in Fig. 3(b) and \(v_i \) it follows that \(K_m = 0.07 \text{ mol dm}^{-3} \).

\[
\begin{align*}
E + S & \xrightarrow{k_1} ES \xrightarrow{k_2} E + P \\
\frac{1}{v} & = \frac{1}{v_i} + \frac{K_m}{v_i c_{\text{RSH}}} \\
v_i & = k_3 E_0 \\
K_m & = \frac{k_{-1} + k_2}{k_1} \\
K & = \frac{k_i}{k_{-1}}
\end{align*}
\]

Scheme 2. Summary of Michaelis–Menten kinetics. In this scheme \(v_i \) is the maximum reaction rate at \(c_{\text{RSH}} = 0 \). \(K_m \) is the Michaelis–Menten constant. \(K_i \) is the equilibrium constant for substrate binding, and \(E_0 \) is the concentration of added catalyst.

The occurrence of a saturation effect for the catalytic activity upon addition of excess substrate, which is common in enzymatic reactions, has also been observed in other systems involving polymeric catalysts [19], indicating that a complex is formed between the substrate and the catalyst before the actual reaction takes place.
The observed value of k_2 is remarkably high for a polymeric catalyst, while the value of K_w is in the usual range. Values of k_2 normally lie in the range 10^{-3} to 10^{-1} s$^{-1}$ and $K_w = 10^{-4}$·1 mol dm$^{-3}$ for polymeric catalysts obeying Michaelis–Menten kinetics [19–21]. The value of the turnover number for a polymeric catalyst observed in this work is of a magnitude which is only commonly encountered with enzymes.

Effect of ionic strength

Figure 4 illustrates the catalytic activity at a pH value of 7.2 and a temperature of 25.0 °C as a function of the ionic strength μ (added NaCl). The addition of small amounts of salt leads to a severe reduction in the reaction rate. This behaviour may be explained by the considerable decrease in the concentration of the thiol anion (RS$^-$) adjacent to the polymer chain caused by repulsive forces between competitive anions (Cl$^-$) and shielding of the charge on the chain. Moreover, upon addition of salt the polymeric coils shrink considerably due to shielding of the chain charge, and this is reflected in a decreasing viscosity for solutions of the polymeric catalyst [22]. Hence, the occurrence of transport limitations of reactants, which would cause a lower (apparent) reaction rate, cannot be excluded. Similar electrostatic effects have been observed for other polymeric catalysts in aqueous solutions. Pecht et al. [23] have investigated the oxidation of ascorbate and other negatively charged ions with molecular oxygen in the presence of a copper(II)-poly(histidine) catalyst, the addition of salt again causing the reaction rate to diminish. Tsujida et al. [24] have also reported that an increase of anion concentration caused by the addition of neutral salt led to a decrease of reaction rate in the electron transfer reactions of cobalt(III)-poly(4-vinylpyridine) complexes.

![Fig. 4. Reaction rate as a function of the ionic strength (NaCl). pH = 7.2. Other reaction conditions as listed for Fig. 2.](image-url)
Effect of temperature

In order to adduce further supporting evidence for the hypothesis that addition of salt lowers the local substrate concentration (RS⁻), the temperature dependence of the reaction rate has been measured at \(\mu = 0 \) and \(\mu = 0.1 \) between 5 and 45 °C, at a fixed catalyst concentration and pH. Because the reaction rate largely depends upon the pH value of the system [10], this was controlled by addition of small amounts of HCl or NaOH to compensate for the thermal dissociation affects.

Plots of \(\ln v \) against the reciprocal of the temperature are shown in Fig. 5, the overall activation energies being listed in Table 2. In the calculation of the activation energies, measurements above 40 °C were not taken into account since limitations of oxygen transport were observed at such temperatures. The difference in activation energy at \(\mu = 0 \) and \(\mu = 0.1 \) is small; however, the decrease in activity shown in Fig. 4 is quite large. For this reason the observed decrease in chemical reactivity must arise from a smaller activation entropy, smaller local reactant concentrations or both. At this stage of the investigation it is not yet possible to distinguish clearly between these effects since ionic strength and chain conformation may also affect the activation entropy. We have shown earlier [10] that at intermediate pH values no direct correlation exists between the conformation of the catalyst and reaction rate; however, this does not entirely exclude the

![Graph](image)

Fig. 5. A plot of \(\ln v \) against the reciprocal of the temperature for different ionic strengths (NaCl): pH = 7.3 ± 0.1; other reaction conditions as listed for Fig. 2; ○: \(\mu = 0 \); ●: \(\mu = 0.1 \).

<table>
<thead>
<tr>
<th>pH</th>
<th>(\mu) (mol dm(^{-3}))</th>
<th>(E_a) (kJ mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>0</td>
<td>61 ± 7</td>
</tr>
<tr>
<td>7.2</td>
<td>0.1</td>
<td>49 ± 2</td>
</tr>
</tbody>
</table>
occurrence of a change in the conformational activation entropy. Hence, irrespective of the fact that the polymeric catalyst conformation is strongly influenced by salt addition, it is to be expected that a lower thiol concentration rather than a lower activation entropy will have the greater effect upon the reaction rate.

Effect of catalyst concentration

Important kinetic features have been obtained by investigating whether \(k_2 \) (eqn. (7), Scheme 2) and \(K_m \) (eqn. (8), Scheme 2) remain constant when the catalyst concentration is varied. Since variations in the Co/NH\(_2\) ratio affect the reaction rate [9], this ratio was kept constant at 1.3 \(\times \) 10\(^{-4}\) during the first set of experiments. Since polymer concentration varies, the pH value was controlled by the addition of small amounts of NaOH and was kept constant at 7.4. Lineweaver–Burk plots have been composed for several concentrations of the polymeric catalyst [Fig. 6(a)] and values of \(v_r \), \(K_m \) and \(h_2 \) determined (see Table 3). The reaction rate at infinite substrate concentration, \(v_r \), is plotted against catalyst concentration in Fig. 6(b). From the slope in Fig. 6(b) \(k_2 \) was derived: \(k_2 = 2.8 \times 10^3 \) s\(^{-1}\). The linear relationship found is in full accordance with eqn. (7) in Scheme 2. Also \(K_m \) does not change significantly within experimental error.

The higher value of \(k_2 \) at lower Co/NH\(_2\) ratios (\(k_2 = 1.6 \times 10^3 \) and \(2.8 \times 10^3 \) s\(^{-1}\) at Co/NH\(_2\) = 3.9 \(\times \) 10\(^{-4}\) and 1.3 \(\times \) 10\(^{-4}\), respectively) may be ascribed to effects arising from different bulk pH values at the two ratios employed. Evidently, the calculated values of \(k_2 \) are apparent values, since the effective catalyst concentration diminishes at higher Co/NH\(_2\) ratios. On this basis, an absolute value of \(k_2 \) should be obtained on extrapolation to Co/NH\(_2\) = 0.

![Fig. 6. (a) Lineweaver–Burk plots for several catalyst concentrations. Co/NH\(_2\) = 1.36 \(\times \) 10\(^{-4}\); pH = 7.4; reaction volume = 0.101 dm\(^3\); \(T = 25.0 \pm 0.1 \) °C; \(P_0 = 100 \) kPa; 0: \(E_0 = 0.98 \times 10^7 \) M; 0: \(E_0 = 1.92 \times 10^7 \) M; 0: \(E_0 = 2.87 \times 10^7 \) M; 0: \(E_0 = 3.83 \times 10^7 \) M. (b) Plot of the reaction rates at infinite substrate concentration against the catalyst concentration, \(E_0 \), expressed as mol Co/Co(NH\(_2\))\(_4\) dm\(^{-3}\). Reaction conditions as listed for Fig. 6(a). Experimental errors are within 95% confidence limits.](image-url)
TABLE 3
Values of \(v_s \), \(K_m \) and \(k_{2} \) as a function of the catalyst concentration \(E_0 \)

<table>
<thead>
<tr>
<th>(10^2v_s) (mol dm(^{-3}))</th>
<th>(10^4C_0/NH_3)</th>
<th>(10^3k_1) (mol dm(^{-3}) s(^{-1}))</th>
<th>(K_m) (mol dm(^{-3}))</th>
<th>(10^{-3}k_2) (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>1.3</td>
<td>2.7 ± 0.5</td>
<td>0.11 ± 0.02</td>
<td>2.5 ± 0.6(^a,e)</td>
</tr>
<tr>
<td>1.92</td>
<td>1.3</td>
<td>5.9 ± 0.8</td>
<td>0.11 ± 0.01</td>
<td>3.1 ± 0.4(^b)</td>
</tr>
<tr>
<td>2.87</td>
<td>1.3</td>
<td>7.9 ± 0.9</td>
<td>0.09 ± 0.01</td>
<td>2.8 ± 0.3(^b)</td>
</tr>
<tr>
<td>3.83</td>
<td>1.3</td>
<td>10.9 ± 1.9</td>
<td>0.07 ± 0.01</td>
<td>2.9 ± 0.5(^b)</td>
</tr>
<tr>
<td>5.71</td>
<td>3.9</td>
<td>5.9 ± 0.9</td>
<td>0.07 ± 0.01</td>
<td>1.6 ± 0.3(^b)</td>
</tr>
</tbody>
</table>

\(^a\) Calculated from the data in Fig. 6(a).
\(^b\) Calculated from the data in Fig. 3(b).
\(^c\) All errors are within 95% confidence limits.

The value of \(K_m \), however, is apparently not very sensitive to the Co/NH\(_3\) ratio (see Table 3); obviously \(K_m \) is not dependent on the polymer concentration over the range studied.

Effect of oxygen pressure

The effect of oxygen pressure on reaction rate was investigated over the pressure range 10 - 100 kPa at fixed substrate concentration. The results are shown in Fig. 7(a). The occurrence of a saturation effect and the linear nature of the Lineweaver–Burk plot [Fig. 7(b)] indicate that Michaelis–Menten kinetics may apply to the rate dependence on oxygen pressure.

Special attention has been paid to the possibility of oxygen transport limitations to the reaction. A somewhat faster or slower stirring speed does not affect the oxygen uptake rate, even over the low pressure region, although the reaction rate was more dependent on oxygen pressure over this

Fig. 7. (a) A plot of the reaction rate against the oxygen pressure. Reaction conditions as listed for Fig. 2. (b) Lineweaver–Burk plot for results depicted in Fig. 7(a).
latter region [see Fig. 7(a)]. What is important, however, is that even at the low pressure of 0.4 kPa the reaction rate remained first order in the catalyst concentration, as found earlier at a pressure of 100 kPa. These observations exclude the possible occurrence of transport limitations on the passage of oxygen from the gas phase into the bulk solution.

Effect of the addition of p-benzoquinone

The addition of 15 mg of p-benzoquinone to the reaction vessel (containing 1.5 g of thiol) caused an 80% decrease in the rate of reaction. Although it is possible that p-benzoquinone may take a direct part in the oxidation of the thiol, it is more likely that radical intermediates are involved in the reaction process thus explaining why such a small quantity of free radical scavenger can have such a large effect on the reaction rate.

General discussion

The polymeric catalyst possesses many enzyme-like characteristics:

1. Michaelis-Menten kinetics with respect to RSH.
2. A dependence of the reaction rate on pH with a maximum rate at a pH value of 8 - 9 [10].
3. First order kinetics with respect to catalyst concentration.
4. A relatively high turnover number (k = 2 - 3 x 10^4 s^-1).

The activation energy is similar to the values observed in the autoxidation of RSH by vitamin B12, the latter system exhibiting the same kinetics as the present polymeric system [15].

The occurrence of a saturation effect in the relationship between the reaction rate and oxygen pressure in the present system indicates that, in contrast to the homogeneous system CoPc(NaSO_4)_6/ OH^-, the amount of catalytically inactive binuclear oxo adducts of CoPc(NaSO_4)_6 is not increased by higher oxygen pressures. This confirms again that the CoPc(NaSO_4)_6 sites are effectively shielded from other oxidation sites on the polymer surface.

A comparison of the CoPc(NaSO_4)_6/PVAm system with the homogeneous CoPc(NaSO_4)_6/OH^- system reveals that the kinetics of the two systems are entirely different. The latter system appeared to have a positive, nearly first order, dependence on RS^- [25], the reaction rate decreasing with increasing oxygen pressure [25] and increasing upon addition of comparable amounts of salt [26]. Furthermore, in the conventional system the reaction rate was relatively low and the binuclear oxo-adduct content high [9]. The existence of H_2O_2 was never established, probably because the high pH value caused a rapid conversion of the peroxide [16].

Immobilized conventional systems containing CoPc(NaSO_4)_6 behave differently from the polymeric catalysts reported here. For the former systems, the influence of RSH on the reaction rate varies from being almost linear for porous chloromethylated polystyrene, cross-linked with divinylbenzene [7], to the existence of saturation kinetics for cellulose anion-
exchange resins [6]. In all cases reported, the activity for these immobilized systems is much lower than that observed for the CoPc(NaSO₃)₄/PVAm system.

Obviously, the freely accessible polymer conformation and the special polymeric features of PVAm, such as the basicity of the amine ligands and complexion properties towards CoPc(NaSO₃)₄, act together to provide a much more efficient catalytic system.

Acknowledgements

The authors are indebted to Prof. L. A. A. E. Sluyterman, Prof. R. Prins and Dr. T. P. M. Beelen for stimulating discussions and for a critical reading of the manuscript for this paper.

References

17. L. Michaelis and M. L. Menten, Biochem. Z., 49 (1913) 333.
Chapter IV

Autoxidation of thiols with tetrasodium cobalt(II)phthalocyaninetetrasulfonate, bound to poly(vinylamine), 3a

Dependence on molecular weight

Wilfried M. Brouwer*, Pieter Piet, Anton L. German

Laboratory of Polymer Chemistry, Eindhoven University of Technology,
P. O. Box 513, 5600 MB Eindhoven, The Netherlands

(Date of receipt: June 24, 1983)

SUMMARY:

Polymeric catalysts consisting of cobalt(II)phthalocyanine, CoPc(NaSO₄)₄, coordinatively bound to poly(vinylamine) of various molecular weight, were used as oxidation catalysts in the conversion of thiols to disulfides. The molecular weight of the polymeric ligand, poly(vinylamine), largely affects the reaction rate below a critical polymer concentration of about 0.01 w/v %. The activation enthalpy ΔH‡ does not depend on the degree of polymerization (DP) of the polymeric ligand and from visible light spectra it appears that electron transfer of the thiolation to Co(II) to yield Co(I) is favored when low instead of high molecular weight ligands are used. The observed catalytic oxidation rate of thiol is considerably higher for low molecular weight ligands (DP 20-40) in the low polymer concentration region. This may be attributed to a change in base strength in the microenvironment of CoPc(NaSO₄)₄ due to conformational differences between low and high molecular weight ligands, manifested at low polymer concentrations. When the ligand has no polymeric character, e.g. 1,3-propanediamine, low catalytic activity is observed.

Introduction

Thiol oxidation is of great interest in industrial sweetening processes and in biological systems. It is well known that beside other metal compounds specially tetradsodium cobalt(II)phthalocyanine-2,7,12,17-tetrasulfonate, CoPc(NaSO₄)₄, (Fig. 1) in alkali, possesses catalytic activity in the conversion of thiols to disulfides.

It was shown by other investigators in our institute that upon attachment of CoPc(NaSO₄)₄ to a basic polymeric ligand, the reaction rate increases strongly.

Our aim is to elucidate the role of the polymeric ligand in the increased catalytic action observed. As a model reaction the oxidation of 2-mercaptoethanol in water with molecular oxygen into 2,3′-dihydroxyethanol is being studied using CoPc(NaSO₄)₄ attached to poly(vinylamine) (PVAm) as a catalyst.

In earlier communications we reported on the incorporation of CoPc(NaSO₄)₄ in the polymeric ligand PVAm, on the effect of pH on conformation and catalytic activity of the polymeric catalyst, and on other kinetic characteristics of this homo-

0025-116X/84/$03.00
Fig. 1. Chemical structure of tetracosodium cobalt(II)phthalocyanine-2,7,12,17-tetrasulfonate

The present study is concerned with the relation between molecular weight of the polymeric ligand and the catalytic activity. Recently, experimental results dealing with this peculiar, rarely observed, phenomenon have been published. Now a more extended investigation is presented based on complementary experimental data.

Experimental part

Synthesis

Since monomeric vinylamine is very unstable, poly(vinyllamine hydrochloride) (PVAmHCl) can only be prepared via a prepolymer. Several methods to prepare PVAmHCl are described in the literature [1-12]. We prepared PVAmHCl by hydrolysis of poly(tert-butyl-N-vinylcarbamate) (PTBNVC) in 10 M HCl/ethanol, since this method was reported to yield linear PVAmHCl with 100% protonated amine groups. The monomer tert-butyl-N-vinylcarbamate (TBNC) was prepared starting from acryloyl chloride and proceeding via acryloyl azide, vinyl isocyanate to TBNC. Basically we have used the procedure described by Hughes and St. Pierre [13], but some modifications were applied to increase the yield.

Reduction of reaction times as well as a direct distillation of vinyl isocyanate as soon as it is formed during the decomposition of acryloyl azide largely have contributed to a rise of the yield from 35% to 85% on the basis of acryloyl chloride.

Polymerization of dry TBNC was carried out at 60°C in benzene (dried on CaH₂) with 2,2'-azobisobutyronitrile (AIBN) as initiator. The product PTBNVC was precipitated in a stirred 20-fold excess of cold hexane.

Acryloyl chloride (Fluka, practical grade) and tert-butyl alcohol (Merck, p.a.) were distilled prior to use. Sodium azide (Fluka, pure) was used as provided. Toluene (p.a.) and benzene (p.a.) were dried on CaH₂. AIBN (Fluka, pure) was recrystallized from dichloroethane. Hexane was practical grade and heptane was p.a.

Variation of molecular weight

Variation of molecular weight was achieved by changing the monomer/initiator ratio in the polymerization reaction of TBNC. PTBNVC was precipitated in an excess of cold hexane.
Aautodilation of thios with tetrachloro carbalt(II)phthalocyaninetetrasulfonate...

The high molecular weight samples were isolated by filtration, but the products with a low degree of polymerization (DP) could only be successfully isolated by centrifugation of the white colloidal solutions during 10 mins at 2000 r. p. m.

In order to obtain low molecular weight products, relatively large initiator concentrations had to be used. Unreacted initiator could be removed by redissolving the dried crude polymerization product in benzene and precipitation in hexane. All samples were purified twice in this way and afterwards washed with heptane p.a. The samples were dried at room temperature at 10⁻² Pa.

In Fig. 2 a gel permeation chromatogram of a low molecular product is shown before and after one purification step. Peak (2) originates from unreacted AIBN and disappears after further purification. By application of Benoit's universal calibration concept¹⁵ the method of Mahabadi and O'Driscoll¹⁶ was used for developing a GPC calibration curve for PTBNVC. The dispersity (Dₜ / Mₜ) appeared to have values between 2 and 2.5 for all samples.

A summary of the various polymerization conditions is shown in Tab. 1. The molecular weight of the PTBNVC samples was determined by membrane and vapour pressure osmometry and is also listed in Tab. 1. For the isolation of low molecular weight PVAmHCl centrifugation appeared to be imperative. The yields of both high and low molecular weight PVAmHCl were about 90 – 95% on the basis of PTBNVC.

Tab. 1. Polymerization conditions and number average molecular weight Mₐ of poly(tert-butyl N-vinylcarbanate) (PTBNVC)²⁰

<table>
<thead>
<tr>
<th>Sample</th>
<th>CPTBNVC (mol·dm⁻³)</th>
<th>C_AIBN (mol·dm⁻³)</th>
<th>10⁻¹. Mₐ (g·mol⁻¹)</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.54</td>
<td>0.050</td>
<td>3.3</td>
<td>22³⁹</td>
</tr>
<tr>
<td>II</td>
<td>0.66</td>
<td>0.046</td>
<td>5.3</td>
<td>41²⁰</td>
</tr>
<tr>
<td>III</td>
<td>1.01</td>
<td>0.043</td>
<td>8.7</td>
<td>65²⁰</td>
</tr>
<tr>
<td>IV</td>
<td>1.00</td>
<td>0.030</td>
<td>10³</td>
<td>154²⁰</td>
</tr>
<tr>
<td>V</td>
<td>1.17</td>
<td>0.003</td>
<td>13³</td>
<td>720²⁰</td>
</tr>
<tr>
<td>VI</td>
<td>1.10</td>
<td>0.002</td>
<td>13³</td>
<td>930²⁰</td>
</tr>
<tr>
<td>VII</td>
<td>1.15</td>
<td>0.002</td>
<td>148</td>
<td>1 030²⁰</td>
</tr>
</tbody>
</table>

²⁰ Conditions: solvent: benzene; temp.: 60°C; reaction time: 20 h.
²ⁱ After purifying twice.
²⁰ Obtained by vapour pressure osmometry.
²⁰ Obtained by membrane osmometry.
It has been reported that the average DP of PVAmHCl is somewhat larger than that of PTBNVC, which was ascribed to the probable loss of some low molecular weight material in the precipitation step of hydrolyzed PTBNVC. However, with low molecular weight PTBNVC the yield of PVAmHCl was still about 90%, which may indicate that no severe fractionation occurs during the hydrolysis step.

Since the characterization of low molecular weight PVAmHCl is rather complicated (PVAmHCl is a polyelectrolyte and not soluble in polar organic solvents) only the number average DPs of PTBNVC are given. The DPs of PVAmHCl may be somewhat higher.

Measurements

Potentiometric titrations: Solutions of PVAm were obtained by eluting 3% aqueous solutions of PVAmHCl through an Amberlite IRA 401 anion-exchange column. All eluates were tested for the absence of chloride by adding a silver nitrate/nitric acid solution, which proved that the exchange had been complete.

The concentration of amine groups in the PVAm solution was determined by potentiometric titration with HCl (Titrisol ampoules, Merck) in 2 M NaCl. A Radiometer Copenhagen titration equipment fitted with a G 2401 B pH electrode was used.

The degree of protonation \(\sigma \) was calculated as follows:

\[
\sigma = \frac{c_{\text{added}} - c_{\text{free}}}{c_{\text{free}} + c_{\text{conh}}}
\]

where \(c_{\text{added}} \) is the proton concentration as resulting of added HCl; \(c_{\text{free}} \) and \(c_{\text{conh}} \) are the concentrations of free protons and hydroxyl ions measured in the titration vessel, respectively; \(c_{\text{conh}} \) is the concentration of ionizable groups.

Osmometry: The molecular weight of the PTBNVC samples was determined by osmometry in solution. For samples having molecular weights \(>20000 \) a Hewlett-Packard 502 high speed membrane osmometer thermostatted at 37 °C was used; samples with lower molecular weights were measured on a Knauer vapor pressure osmometer at 60 °C. Calibration was carried out with sucrose-Octaacetate (BDH) recrystallized twice from ethanol.

Viscometry: Viscometry measurements were performed with a Hewlett-Packard 5001 B automatic viscometer of the Ubbelohde type at 25.00 °C. Solutions were filtered before measurements.

The measurements with PVAm solutions were conducted in a nitrogen atmosphere.

Visible light spectroscopy: Visible light spectra were obtained at room temperature under the exclusion of oxygen with a Unicam SP 800 D Ultraviolet spectrophotometer suitable for absorbencies between 0.001–1.0 units. For experiments in the low concentration region of CoPc(NaSO₄)₄ a Cary 14 spectrophotometer was used with absorbance units of 0.001 and 0.01.

Catalytic activity measurements: CoPc(NaSO₄)₄, kindly provided by Dr. T. P. M. Beelen, was synthesized according to the method by Weber and Busch. As described by Zwart et al., 2-Mercaptoethanol (Merck) was distilled and stored in the dark at 5 °C for periods not exceeding two weeks. The thiol content was checked isomerically before use and was found to be 98%. For every set of experiments freshly prepared stock solutions of CoPc(NaSO₄)₄ and PVAm were used. Catalytic activity experiments were carried out in an all-glass thermostated Warburg apparatus, equipped with a mechanical glass-screwer. Stirring speed was 2300 rpm. Oxygen consumption rates were measured with a digital flow-meter equipment (Inaxom Veenendaal, The Netherlands).

The polymeric catalyst was prepared by adding an aqueous solution of CoPc(NaSO₄)₄ to a PVAm solution in water, resulting in a coordinatively bound polymer metal complex. The catalyst solution was degassed twice and saturated with oxygen in 20 min. The reaction was started by adding the 2-mercaptoethanol to the reaction vessel using a syringe. Initial reaction rates were calculated from the oxygen consumption during the first minute of reaction.

It was assumed that at a stirring speed of 2300 rpm oxygen would not meet any transport limitations by going from the gas phase to the bulk during reaction, since an increase of stirring
speed did not increase the reaction rate. Moreover, the reaction rate appeared to be first order in polymeric catalyst over a wide concentration range\(^5\), which corroborates the above assumption.

Results and discussion

Polymeric catalyst during reaction

In earlier investigations it was shown that PVAm exhibits polyelectrolyte character and that pH affects conformation and charge density of the polymer\(^4\,16,19\).

Under reaction conditions, this very pronounced polyelectrolyte character is present as is shown in Fig. 3 (■), where the reduced viscosity of the polymeric catalyst in the presence of thiol is shown as a function of polymeric catalyst concentration. The viscometric behaviour shown is characteristic of polyelectrolytes\(^30\). As a result, it can be expected that during reaction the polymeric catalyst is more easily accessible to reactants, due to the expanded conformation. This implies that transport limitations, due to cell diffusion, are not likely to occur. The viscometric behaviour of the polymeric catalyst during reaction is in sharp contrast to the behaviour of PVAm solutions where the marked polyelectrolyte character is suppressed in 0.1 M NaCl and 0.01 M NaOH (○) in Fig. 3.

![Fig. 3](image_url)

Fig. 3. Reduced viscosity, \(\frac{n_0}{\eta} / \eta\), of aqueous solutions of poly(vinylamine) (PVAm) vs. polymer mass concentration, \(\eta\). (■): PVAm in the presence of CoFe(NaSO\(_4\))\(_3\) (Na/Co = 7.7 \times 10\(^{-4}\)) and 2-mercaptopethanol (c\(_{\text{NH}}\) = 0.19 mol \cdot dm\(^{-3}\)); (○): PVAm in 0.1 M NaCl and 0.01 M NaOH; temp. 25.0°C; \(M_{V}^{\text{p,VVAm}}\) = 5 \times 10\(^4\) g \cdot mol\(^{-1}\).

![Fig. 4](image_url)

Fig. 4. pH vs. degree of charge, \(\psi\). PVAm DP = 23 (△); PVAm DP = 720 (△); 1,3-PDA (○). (---): no salt; (——): 2 M NaCl. Conc. of titratable groups \(c_{\text{NH}}\) = 0.01 mol \cdot dm\(^{-3}\), temp. 22°C.
Degree of charge of the polymeric catalyst

The effect of pH and ionic strength on the degree of charge of PVA@m of various DP was determined by potentiometric titration of basic polymer solutions with HCl in the presence and absence of 2 m NaCl. In Fig. 4 titration curves are shown for PVA@m with DP = 23 (●) and 720 (△) and for 1,3-propanediamine (1,3-PDA) (○), which may be regarded as the low molecular weight analog of PVA@m with a DP of 1.5. The curves in Fig. 4 clearly show that (1) the low molecular weight analog of PVA@m (○) is more basic than PVA@m itself, probably due to nearest neighbour interactions between the amine groups, present in PVA@m, but almost absent in 1,3-PDA; (2) in the absence of salt (----) the pK_a of the polymeric amine groups is higher for the low molecular weight PVA@m (●), but at high ionic strength (--), where the polyelectrolyte character is suppressed, this molecular weight dependence disappears; (3) salt increases base strength of both PVA@m and 1,3-PDA, and (4) under reaction conditions (bulk pH 5.8 - 7.5, depending on the amine/thiol ratio) the PVA@m is 50 - 70% charged, but for 1,3-PDA the degree of protonation will be about 95%.

This means that PVA@m possesses a larger quantity of free amine groups, able to form complexes with the CoPc(SO_4)_2^2- ions, than 1,3-PDA does, while in both cases a large amount of thiol anions will be present as counterions near the protonated, charged amine groups. In the polymer many counterions are present in the close vicinity of CoPc(SO_4)_2^2-, attached to the polymer, which is not the case for 1,3-PDA.

Catalytic experiments

In order to investigate the dependence of reaction rate on the number average DP of PVA@m and in order to prove whether enthalpic or entropic effects are dominant, catalytic activities and activation energies were determined for each polymer at rather low polymer concentrations.

We have found earlier that the dependence of the reaction rate on the thiol concentration can be described by Michaelis-Menten kinetics:

\[
E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P
\]

(2)

in which E stands for catalyst, S for substrate (RSH), and P for products. Assuming steady state kinetics it can be derived that

\[
\frac{1}{r} = \frac{1}{k_2[E_0]} + \frac{K_m}{k_2[E_0][S]}
\]

(3)

where r is the initial rate, [E_0] and [S] are the initial concentrations of CoPc(NaSO_4)_2 and RSH, k_2 is the rate determining rate constant, K_m = (k_2 + k_3)/k_2 is the Michaelis-Menten constant, and K'_i = k_i/k_2 is the equilibrium constant for substrate binding. For polymer IV Lineweaver-Burk plots in the temperature interval 10 - 35°C are shown in Fig. 5a. From the intercept, slope, and polymer catalyst concentrations the values of the turnover number k_2 and the Michaelis-Menten
Fig. 5a

Fig. 5b

constant K_m can be obtained. In Fig. 5b the Arrhenius plots are shown containing the values of k_2 and K_m derived from Fig. 5a. From the slope the (activation) enthalpies were calculated: $\Delta H^\circ_2 = (47 \pm 4) \text{kJ} \cdot \text{mol}^{-1}$ and $\Delta H_m = (5 \pm 5) \text{kJ} \cdot \text{mol}^{-1}$, and from the intercept at $T^{-1} = 0$ the (activation) entropies are obtained: $\Delta S^\circ_2 = (-34 \pm 10) \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ and $\Delta S_m = (-3 \pm 15) \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Evidently ΔH°_2 is about 10 times larger than ΔH_m.

Since determination of ΔH°_2 in this way is quite laborious, while the precision in determination of K_m values is poor, activation energies for polymeric catalysts with polymeric ligands of various molecular weight were obtained from experiments performed at different temperatures at constant large thiol concentration. ([S] = 0.37 mol \cdot dm^{-3}). Since ΔH°_2 is so much larger than ΔH_m and since [S] is several times larger than K_m, the activation energies obtained in this way are almost equal to the values of ΔH°_2. For all polymeric ligands of different DP Lineweaver-Burk plots at 298 K were drawn in order to obtain the kinetic constants k_2^{298} and K_m^{298}. All these parameters thus obtained including ΔS_m° (obtained from the intercept of a plot of $\ln[(1 + K_m^{298}([S])/[E])]/(k_2^{298})$ vs. T^{-1}) and $\Delta G^\circ_2 = (\Delta H^\circ_2 - T\Delta S^\circ_2)$ at 298 K are listed in Tab. 2.

It must be mentioned that 1,3-DPA exhibits Michaelis-Menten kinetics with respect to thiol, but that a curved Arrhenius plot is obtained (with increasing temperature reaction rate increases less than expected). The value of $\Delta H^\circ_2^{298}$ must therefore be regarded with some reserve. In Fig. 6 values of K_m, k_2, and ΔH°_2 at 298 K are shown as a function of DP. These values and specially K_m and k_2 depend not only on temperature but also on other reaction conditions such as pH and ionic strength. The figure clearly demonstrates the occurrence of a maximum in k_2 and K_m at a number average DP around 40. If the length of the polymeric ligand decreases from the
Tab. 2. Activation parameters and reaction constants at 298 K

<table>
<thead>
<tr>
<th>Sample</th>
<th>DP</th>
<th>ΔH^*_a</th>
<th>ΔS^*_a</th>
<th>ΔG^*_a</th>
<th>$10^{-3} \cdot k_2$</th>
<th>K_m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[kJ mol$^{-1}$]</td>
<td>[J mol$^{-1}$ K$^{-1}$]</td>
<td>[kJ mol$^{-1}$]</td>
<td>[s$^{-1}$]</td>
<td>[mol·dm$^{-3}$]</td>
</tr>
<tr>
<td>1,3-PDA</td>
<td>1.5</td>
<td>40</td>
<td>-78</td>
<td>63.2</td>
<td>0.1</td>
<td>0.06</td>
</tr>
<tr>
<td>I</td>
<td>23</td>
<td>47</td>
<td>-31</td>
<td>55.8</td>
<td>2.5</td>
<td>0.10</td>
</tr>
<tr>
<td>II</td>
<td>41</td>
<td>50</td>
<td>-17</td>
<td>55.6</td>
<td>2.5</td>
<td>0.13</td>
</tr>
<tr>
<td>III</td>
<td>61</td>
<td>46</td>
<td>-34</td>
<td>56.0</td>
<td>2.3</td>
<td>0.12</td>
</tr>
<tr>
<td>IV</td>
<td>154</td>
<td>47</td>
<td>-34</td>
<td>57.0</td>
<td>2.1</td>
<td>0.11</td>
</tr>
<tr>
<td>V</td>
<td>720</td>
<td>43</td>
<td>-46</td>
<td>57.1</td>
<td>1.4</td>
<td>0.08</td>
</tr>
<tr>
<td>VI</td>
<td>930</td>
<td>47</td>
<td>-36</td>
<td>57.2</td>
<td>1.3</td>
<td>0.07</td>
</tr>
<tr>
<td>VII</td>
<td>1030</td>
<td>46</td>
<td>-41</td>
<td>57.9</td>
<td>1.1</td>
<td>0.07</td>
</tr>
</tbody>
</table>

$^a \Delta G^*_a$ calculated from unrounded values of ΔH^*_a and ΔS^*_a.

Fig. 6. Dependence of Michaelis-Menten constant K_m, rate constant k_2, and activation enthalpy ΔH^*_a on the degree of polymerization (DP) of the polymeric ligand, at 298 K. (□): K_m^{poly}; (●): K_m^{poly}; (○): $\Delta H^*_a^{poly}$, $c_{N} = 3.8 \times 10^{-3}$ mol·dm$^{-3}$, N/Co = 100; pH = 5.7

Fig. 7. Catalytic activity (expressed in ml oxygen consumed per minute per μmole CoPc(NaSO$_4$)$_3$) of polymeric catalysts at various compositions vs. N/Co ratio. (□): DP = 23, $c_{CoPc(NaSO_4)} = 1.9 \times 10^{-2}$ mol·dm$^{-3}$, c_{N} variable. (○): DP = 100, $c_{CoPc(NaSO_4)} = 1.9 \times 10^{-2}$ mol·dm$^{-3}$, c_{N} variable. (●): DP = 1030, $c_{N} = 10^{-4}$ mol·dm$^{-3}$, $c_{CoPc(NaSO_4)}$ variable, ionic strength was kept constant with catalytically inactive K$_4$Fe(CN)$_6$ at 5.7 $\times 10^{-6}$ mol·dm$^{-3}$, $c_{Na} = 0.37$ mol·dm$^{-3}$

maximum value an increase of the reaction constants k_1 and K_m can be observed up to about 40–20 monomeric units. The values of k_1 and K_m for 1,3-PDA (DP = 1.5), where polymeric effects are absent, are very low in comparison with the polymeric systems, but nevertheless reactivity is still about 3 times larger than for the conventional CoPc(NaSO$_4$)$_3$/OH$^-$ system.
Assuming that \(k_1 \ll k_2 \left(K_m^{-1} = K_c \right) \) the slight molecular weight dependence of \(K_m \) demonstrates that the formation of an active enzyme-substrate complex is not affected strongly by the higher base strength occurring in low molecular weight PVAm (Fig. 4).

From Fig. 6 it is unequivocally shown that \(\Delta H^\circ \) does not depend on DP which strongly indicates that the reaction mechanism does not change when using polymeric ligands of different chain length. Therefore, the observed change in \(k_3 \) must be attributed to a change in local reactant concentrations, effective catalyst concentration, or activation entropy.

The local base strength in the vicinity of the catalytic sites enhances the local concentration of thiol anions, being the reactive species. From Fig. 4 it was shown that in low molecular weight PVAm basicity is higher than in high molecular weight PVAm, so this would account qualitatively for the observed molecular weight dependence. Moreover, at low polymer concentration differences in coil density may enlarge these differences.

The effective catalyst concentration will be maximum when all the CoPc(NaSO₄)₄ is present in the monomeric form, since dimeric and oligomeric CoPc(NaSO₄)₄ are less catalytically active. It is known that steric protection against dimerization reactions can be achieved by the attachment of metalloporphyrins in low concentration to polymers. Nonetheless, it has to be investigated whether the distribution of CoPc(NaSO₄)₄ among separate coils — the concentration of the latter will be higher for lower DP ligands at the same bulk concentration of monomeric units — affects the amount of monomeric CoPc(NaSO₄)₄. In other words it must be verified whether the catalytic activity depends on the N/Co ratio in the polymeric catalyst solution.

In Fig. 7 reaction rate is shown versus the N/Co ratio. The latter was varied by changing the CoPc(NaSO₄)₄ concentration at constant PVAm concentration and constant ionic strength for \(DP = 1030 \), (○), or alternatively by changing the PVAm concentration at constant CoPc(NaSO₄)₄ concentration for \(DP = 1030 \) (□) and for \(DP = 23 \) (■). The curves (□) and (■) are in full agreement with those published by Schäfer. From a comparison of the curves (○) and (□) in Fig. 7 it may be inferred that at these CoPc(NaSO₄)₄ concentrations not the N/Co ratio and thus the distribution among the separate coils is important but merely polymer concentration governs reaction rate. It may therefore be expected that the effective catalyst concentration will not be affected by the molecular weight of the polymeric ligand either. Curves (□) and (■) in Fig. 7 clearly show that (1) the molecular weight dependence of reaction rate becomes more pronounced at lower polymer concentrations and (2) that enhanced reaction rates are observed as polymer concentration increases. According to the former observation the effect of molecular weight of catalytic activity is more pronounced when the polymeric chains exist in an isolated fashion and chain interpenetration is practically absent.

The increase of reaction rate as polymer concentration becomes higher can be ascribed to the increase in bulk pH (observed: pH = 5.8 at \(c_{-\text{N}} = 5 \cdot 10^{-3} \) mol·dm\(^{-3}\)).
and pH = 7.0 at $c_{\text{H}^+} = 10^{-3} \text{ mol dm}^{-3}$) which will on itself increase reaction rate as we have shown earlier.6)

While summarizing the above observations, i.e. the constancy of ΔH° over a wide molecular weight range, the independence of reaction rate on the CoPc(NaSO$_3$)$_4$ distribution among the polymer coils, and the higher basicity of amine groups in low molecular weight PVAm, it becomes plausible that the essence of the molecular weight dependence observed for the present polymeric catalyst, is explained by the differences in local base strength in low and high molecular weight PVAm.

Visible light spectroscopy

From the catalytic experiments it was inferred that the effective catalyst concentration, i.e. amount of monomeric CoPc(NaSO$_3$)$_4$, was not affected seriously by the molecular weight of the polymeric ligand. VIS experiments will confirm this conclusion. In Fig. 8 the visible light spectra of CoPc(NaSO$_3$)$_4$ in the presence of low and high molecular weight PVAm at rather low polymer concentrations are shown. It reveals that the intensity of both the monomer (14900 cm$^{-1}$) and dimer (16000 cm$^{-1}$) peak of CoPc(NaSO$_3$)$_4$ is slightly lower in the case of high molecular weight PVAm. If a molecular weight dependent dimerization of CoPc(NaSO$_3$)$_4$ would play an important role, the intensity of the dimer peak should have increased relative to the monomer peak for the larger DP sample. Such behaviour, however, has not been observed. The observed slight difference between the spectra may be caused by a changing micro-environment of CoPc(NaSO$_3$)$_4$ when attached to polymers of different molecular weight. At much higher PVAm concentrations no difference in spectra was observed.

The effect of local base concentration on the visible light spectra of CoPc(NaSO$_3$)$_4$ in the presence of thiol is shown in Fig. 9. Equimolar ligand solutions of 1,3-PDA and PVAm were used as base. The band at 22000 cm$^{-1}$ is only observed when base is present and must be assigned to metal-to-ligand charge transfer transitions of Co(II)27). This means that reduction of CoPc(NaSO$_3$)$_4$ only takes place in the presence of base. Indeed no catalytic activity is observed when RSH is present in the absence of any base. For other systems involving transition metal compounds such as Fe(III)/myoglobin27 and VitB$_{12}$ in the presence of thiols, similar spectroscopic observations have been made. The reduction of the metal centre solely occurred when, apart from the base involved in the complexation of this centre, extra base was added.

In Fig. 9 a band of much lower intensity at 22000 cm$^{-1}$ is observed for 1,3-PDA in comparison with PVAm giving supporting evidence that the base concentration in the vicinity of the oxidation sites, which will be much higher for the polymer, dominates the reduction of these sites. These spectroscopic observations agree with the lower reaction rate observed for 1,3-PDA in comparison with PVAm (Fig. 6).

6 In order to perform pH-stat measurements, we deliberately did not make use of buffer solutions, since salt largely affects reaction rate.
Autoxidation of thiols with tetraammonium cobalt(II)phthalocyaninetetrasulfonate...

Fig. 8. Visible light spectra of CoPc(NaSO₄)$_n$ in aqueous PVAm solution under nitrogen atmosphere. Conc. of N-groups $c_{-N} = 4 \times 10^{-4}$ mol·dm$^{-3}$; $c_{CoPc(NaSO₄)_{n}} = 4 \times 10^{-6}$ mol·dm$^{-3}$; path length $b = 50$ mm; (—) $DP = 23$; (·········) $DP = 930$

Fig. 9. Visible light spectra of the interaction product of CoPc(NaSO₄)$_n$ and RSH in the presence of (1) PVAm, $DP = 930$, $c_{-N} = 2 \times 10^{-3}$ mol·dm$^{-3}$; (2) 1,3-PDA, $c_{-N} = 2 \times 10^{-3}$ mol·dm$^{-3}$; (3) no base. Nitrogen atmosphere, $c_{CoPc(NaSO₄)_{n}} = 2 \times 10^{-3}$ mol·dm$^{-3}$, $c_{RSH} = 0.07$ mol·dm$^{-3}$, $b = 10$ mm

Fig. 10. Visible light spectra of the interaction product of CoPc(NaSO₄)$_n$ and RSH in the presence of PVAm of different molecular weight. Nitrogen atmosphere, N/Co = 100; $c_{RSH} = 0.07$ mol·dm$^{-3}$; (—) $DP = 23$; (·········) $DP = 930$. (a) Conc. of N-groups $c_{-N} = 10^{-2}$ mol·dm$^{-3}$, path length $b = 2$ mm; (b) $c_{-N} = 2 \times 10^{-3}$ mol·dm$^{-3}$, $b = 10$ mm; (c) $c_{-N} = 4 \times 10^{-4}$ mol·dm$^{-3}$, $b = 50$ mm; (d) $c_{-N} = 8 \times 10^{-5}$ mol·dm$^{-3}$, $b = 50$ mm
The influence of polymer concentration and molecular weight on the visible light spectra of CoPc(NaSO₄)₃ in the presence of thiol is shown in Fig. 10. Amine group concentration was varied between 10⁻² and 8 · 10⁻⁵ mol · dm⁻³. N/Co ratio and thiol concentration were kept constant. Fig. 10 demonstrates that at N-group concentrations larger than 2 · 10⁻³ mol · dm⁻³ the spectra with the low and high molecular weight PVAm are identical. But below this critical concentration the spectra differ more when concentration is lowered. The 22000 cm⁻¹ band intensity indicates that more CoPc(NaSO₄)₃ exists in the reduced state when low molecular weight ligands are used. Obviously, a significant molecular weight dependent micro-environmental change of the oxidation sites is observed only at N-group concentrations lower than 2 · 10⁻³ mol · dm⁻³ (0,01 w/v%). These spectroscopic observations are in qualitative agreement with the difference in reactivity between catalysts with low and high molecular weight PVAm (see Fig. 7).

Conclusions

At low polymer concentrations (<0,01 w/v %) the reaction rate is largely affected by the molecular weight of the polymeric ligand of the catalyst.

Catalysts with polymeric ligands possess higher catalytic activity than in case of a basic ligand without polymeric character (1,3-PDA). However, the polymeric ligand with the lowest molecular weight provides the highest activity.

Neither the activation enthalpy ΔH° nor the effective catalyst concentration seems to be dependent on the DP of the ligands. Potentiometric titrations show that the amine groups in low molecular weight PVAm are more basic in comparison with the high molecular weight PVAm. From these observations it becomes plausible that local base concentration and thus local thiol anion concentration in the vicinity of the oxidation sites are molecular weight dependent and form the essence of the observed molecular weight dependence of reaction rate. At low polymer concentrations when the polymer chains may be assumed to exist in an isolated fashion these molecular weight dependent effects are more pronounced.

Visible light spectra of CoPc(NaSO₄)₃ in the presence of 1,3-PDA and PVAm solutions suggest that specially the local base strength in the vicinity of the oxidation sites dominates the amount of reduced catalyst. This may also account for the observed differences in the spectra of low and high molecular weight ligands, i.e. larger amount of polymeric catalyst in the reduced state for low than for high molecular weight ligands. The spectra were in qualitative agreement with the observed differences in catalytic activity.

The authors are indebted to Prof. L. A. A. E. Shysterma, Prof. R. Prins, and Dr. T. P. M. Buelen for stimulating discussions and for critical reading the manuscript.

Autodensation of thiols with tetrasmide cobalt(II)phthioxyanetetrasulfone...

24) Ph. Teyts, C. Decoeure, M. T. Teyts, Makromol. Chem. 84, 51 (1965)
Chapter V

COPOLYMERS OF VINYLAMINE AND VINYLALCOHOL BY ACID HYDROLYSIS OF POLY-(N-VINYL-TERN-BUTYLCARBAMATE-CO-VINYLCETATE).
Evaluation of reactivity ratios.

W.M. Brouwer, P. Piet and A.L. German
Laboratory of Polymer Chemistry
Eindhoven University of Technology
P.O. Box 513
NL 5600 MB Eindhoven
The Netherlands

Summary

Copolymers of vinylamine and vinylalcohol have been prepared by hydrolysis of poly(N-vinyl-tert-butylicarbamate-co-vinylacetate) in 1:1 v/v% ethanol/HCl mixture at room temperature.

Reactivity ratios of the monomers N-vinyl-tert-butylicarbamate (1) and vinylacetate (2) have been calculated from monomer feed and copolymer composition data, according to the methods of Fineman-Ross and Kelen-Tudós, yielding $r_1 = 1.14 \pm 0.06$, $r_2 = 0.47 \pm 0.07$ and $r_4 = 1.18 \pm 0.07$, $r_3 = 0.46 \pm 0.08$, respectively.

From these values the average sequence length distribution of monomer units was derived showing that in the reaction of N-vinyl-tert-butylicarbamate-co-vinylacetate with hydrochloric acid at room temperature, a copolymer with a sequence length distribution of N-vinyl-tert-butylicarbamate-co-vinylacetate is formed.

The reactivity ratios of the monomers N-vinyl-tert-butylicarbamate and vinylacetate were calculated from the monomer feed and copolymer composition data, according to the methods of Fineman-Ross and Kelen-Tudós, yielding $r_1 = 1.14 \pm 0.06$, $r_2 = 0.47 \pm 0.07$ and $r_4 = 1.18 \pm 0.07$, $r_3 = 0.46 \pm 0.08$, respectively.

The sequence length distribution of monomer units was derived showing that in the reaction of N-vinyl-tert-butylicarbamate-co-vinylacetate with hydrochloric acid at room temperature, a copolymer with a sequence length distribution of N-vinyl-tert-butylicarbamate-co-vinylacetate is formed.
carbonate and vinylacetate nearly Remoullier (i.e. purely random) copolymers are formed, with a slight tendency toward alternation.

Introduction

The polymeric amine with the simplest chemical structure is undoubtedly poly(vinylamine) and although its synthesis is rather laborious, it can be prepared according to one of the synthetic routes already known (1-5).

Some important features of these polymers are their water solubility, complexation properties toward transition metal-ions (6), rather high basicity of the amine groups (pKₐ(–NH₃⁺) = 9) (7) and the ability of easy reaction with all kinds of electrophilic compounds, such as dyes (8). The pH dependent basicity of amine groups is of fundamental scientific interest (8).

In our laboratory poly(vinylamine) is being used as a functional polymeric ligand of a thiol oxidation catalyst. Application of this polymeric base instead of NaOH was found to increase catalytic activity 50-fold (9). It appeared from viscosity (10), pH (11) and kinetic (12) measurements that the amine group basicity, polymer charge and conformation largely affected catalytic activity. Combination of these properties with other desirable functionalities can be achieved by appropriate copolymerization. Selection of the synthetic route will depend on the nature of the comonomer.

Copolymers of vinylamine and a suitable uncharged comonomer seem to offer the opportunity to investigate the effect of base group density within the polymer chain on catalytic activity. For this purpose copolymers with either randomly distributed vinylamine units or alternating monomer units are preferred to block copolymers.

Until now, to our knowledge, the synthesis of only two water soluble vinyl copolymers containing vinylamine has been reported: copolymers of vinylamine with sodium vinylsulfonate, containing
cationic and anionic functionalities in water \(^{(13)}\), and copolymers of vinylamine with vinylalcohol containing only cationic functionalities.

The latter copolymers were prepared first by Nikolayev \(^{(14)}\) starting from copolymers of vinylphthalimide and vinylacetate, which could be aminolysed and hydrolysed, respectively, with hydrazine hydrate.

Decomposition of the formed phthalhydrazide salt of vinylamine was achieved in hydrochloric acid according to the method of Reynolds and Kenyon \(^{(1)}\). Very recently, a new way of preparing copolymers of vinylamine and vinylalcohol, by acid hydrolysis of copolymers of N-vinyl-tert-butylcarbamate (NVTC) and vinylacetate (VAc), based on the Hart synthesis of polyvinylamine \(^{(15)}\) was outlined briefly by Bloys van Treslong and Jansen \(^{(16)}\).

The synthetic route they described is an important contribution to making these copolymers more accessible to further investigations. Unfortunately, only few copolymerization data were presented prohibiting accurate calculation of the reactivity ratios of the pre-monomers. Therefore, we followed their preparation method successfully (minor modifications) determining the copolymer reactivity ratios of the monomers from complete data, in order to get insight into the randomness of these very hygroscopic copolymers.

Experimental

Synthesis of the pre-copolymers

NVTC was synthesised according to the Hart method \(^{(15)}\), with some minor modifications \(^{(17)}\). After drying thoroughly, the white, powdery NVTC was purified by sublimation at 34°C at 1 kPa pressure. Regarding the highly poisonous character of NVTC - in equo the toxic hydrolysis product ethylenimine is formed - all manipulations with this reagent were carried out under an efficient fume hood. VAc (kindly provided by DSM) was vacuum distilled before use.
Copolymerization of NVTBC and VAc was carried out in benzene (Merck pro analysis, dried on CaH₂) at 60°C for 6 hr with n,n'-azoisobutyronitrile as initiator under nitrogen. The pre-copolymers were isolated by precipitating the reaction product in a 20 fold excess of ice-cold n-hexane. After drying, the copolymers were purified by redissolution in toluene and precipitation in n-hexane, followed by washing with n-heptane (pro analysis) in order to remove residual initiator. The purified copolymers (1) Scheme 1 were dried at 0.1 Pa, at 35°C.

Number average molecular weights (\bar{M}_n) were determined in toluene at 37°C with a Hewlett Packard 502 High speed Membrane Osmometer, \bar{M}_n lying in the range of 50,000 - 75,000 g mole⁻¹.

The molar fraction of NVTBC units in the copolymer, α, was calculated either from the nitrogen content, obtained from elemental analysis or from the relative peak intensity of the methyl protons of the tert-butyl group in the 1H NMR spectrum (Although the methylene peaks (a and b in Fig. 3) are fully separated, these peaks were nevertheless considered too small for proper analysis)
Hydrolysis of copolymers

Two gram of (I) was dissolved in absolute ethanol and added to a stirred 500 ml round bottom flask by means of a dropping funnel. Then it was mixed with an equal amount of concentrated HCl, added in the same manner, while the temperature was controlled not to exceed 30°C. The mixtures were stirred at room temperature for 48 h. From copolymers (II), with α > 70% (type A), white, brittle precipitates were formed. From copolymers with α-values in the range 0.5-0.7 (type B), white clotty precipitates were obtained after a few hours of reaction, while from reaction mixtures containing copolymers with a lower value of α (type C), no precipitation was observed.

Isolation of hydrolysed copolymers

Copolymers (II) of type A and B were isolated by filtration, washed with cold absolute ethanol, and dried under vacuum at room temperature. These products appeared to be very hygroscopic. Reaction mixtures containing copolymer (II) of type C were diluted with 100 ml of water, neutralized by hydrated sodium carbonate, and followed by removal of the alcohol fraction by rotary evaporation at 50°C. These solutions, mostly containing precipitated NaCl, were ultrafiltrated with distilled water (Diaflow Membrane YM-10, sharp cutoff: 10,000 MW), until no chloride could be detected in the eluent with a AgNO₃/ΗNO₃ test solution. It appeared that ultrafiltration was a safe and effective way of purification.

After eluting solutions of (II) through an Amberlite IRA 401 anion exchange resin in the OH⁻ form, solutions of deprotonated copolymers (III) were obtained. These copolymers were precipitated by pouring aqueous solutions of (III) into acetone.

Analysis

Samples for IR spectra were prepared by evaporation of some drops of a methanolic solution of (III) on a KBr disk. Polymers (I) were
dispersed in a KBr disk. Characteristic absorptions of (III) occur at 3400 cm\(^{-1}\) (CH, NH\(_2\)); 2930 cm\(^{-1}\) (CH\(_2\), CH); 1620 cm\(^{-1}\) (NH\(_2\)); 1470 cm\(^{-1}\) (CH\(_2\), CH); 1100 cm\(^{-1}\) (CH) and 850 cm\(^{-1}\) (C-C).

Potentiometric titration of copolymers (III) were performed with HCl (0.03 N) in the presence of 2 M NaCl. Titration times were not shorter than 20 min, for reasons of reproducibility.

Results and Discussion

Features of synthesis

Complete hydrolysis of poly(N-vinyl-tert-butylcarbamate-co-vinyl-acetate) could be obtained after 48 h of reaction in a mixture of 1:1 v/v % ethanol/concentrated HCl at room temperature. The hydrolysis of tert-butylcarbamate is completed within 1 h \({}^{(5)}\), but the hydrolysis of the acetate is rather slow under these conditions. The rate of hydrolysis of the acetate group could be followed by monitoring the decrease in the -C=O band intensity at 1750 cm\(^{-1}\) in the IR spectra of the copolymers (Fig. 1). It is shown that after 20 h of reaction

![Figure 1: IR spectra of (I) (a - c) after hydrolysis during (a): 0 h, (b): 20 h, (c): 48 h. Arrows indicate the carbonyl group of the acetate moiety at 1750 cm\(^{-1}\).](image-url)
(b in Fig. 1) almost all VAc is hydrolysed and after 48 h the reaction is complete.

Copolymers (II) were only soluble in water, but the deprotonated forms (III) were very soluble in both water and the lower alcohols in agreement with Nikolayev (14).

Basicity of the amines groups

Copolymers (III) were subjected to potentiometric titration experiments with HCl in 2 M NaCl. The results are shown in Fig. 2, revealing that the individual amine groups possess a higher basicity as the amine group content in the copolymers is lower. This behaviour can be
explained by assuming a decreased nearest neighbour interaction when the amine groups find themselves more isolated in the polymer chain at low α values. On the grounds of these experimental observations, copolymers with a high degree of randomness or alternation are expected to be formed. In the following section this inference will be confirmed by measuring the copolymer reactivity ratios. The titration behaviour, shown in Fig. 2, is in qualitative agreement with the titration experiments performed by Bloys van Wisselingh et al. (16) and by Kikura et al. (18) on copolymers (III) prepared according to the Hatt method (5) and the Nikolaev method (14), respectively.

Reactivity ratios of NVTBC and Va in benzene

The dependence of copolymer composition on the monomer feed has been evaluated for initial molar monomer feed ratios, \(q_0 \), in the range 0.05–4. Total conversion was mostly 15% but never exceeded 30%, to avoid large shifts in the monomer feed ratio.

Copolymer compositions were calculated from elemental analysis (C,H,N) of the purified, dried copolymers (1). For some of these copolymers the composition was determined from the methyl proton peak intensity of the tert-butyl group of (2) in the \(^1\)H NMR spectrum (shown in Fig. 3 for \(\alpha = 0.43 \)). In Table 1 values of \(\alpha \) obtained from NMR and elemental analysis data are given, showing that within experimental error the NMR data are in good agreement with the elemental analysis results.

The reactivity ratios of monomers (1) and (2) have been evaluated according to the methods of Fineman-Ross (19) and Kelen-Tudos (20). These methods were selected on the grounds of experimental convenience, since in the present case, copolymer compositional analysis data appeared to be available much more easily and accurately than monomer feed data during the polymerization.

In the Fineman-Ross method the parameters \(F = \left(\frac{q}{q_0} \right)^2 \) and \(C = \frac{q(x - 1)}{x} \) are evaluated, where \(q \) is the average ratio of molar
Figure 1: 1H NMR spectrum of (1) (r = 0.44) in CDCl₃ with TMS as external standard. Peaks corresponding to the hydrogen were indicated.

Table 1: Comparison of empirical and theoretical determination of (C,H,N) and 15N-BNN.

<table>
<thead>
<tr>
<th>Nitrogen NMR</th>
<th>% (theoretical)</th>
<th>% (empirical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>0.64 ± 0.02</td>
<td>0.64 ± 0.04</td>
</tr>
<tr>
<td>C3</td>
<td>0.67 ± 0.04</td>
<td>0.67 ± 0.04</td>
</tr>
<tr>
<td>C3</td>
<td>0.43 ± 0.03</td>
<td>0.43 ± 0.03</td>
</tr>
<tr>
<td>C3</td>
<td>0.11 ± 0.02</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>C3</td>
<td>0.72 ± 0.01</td>
<td>0.72 ± 0.02</td>
</tr>
</tbody>
</table>

(a) Nitrogen content of (1) has been used
(b) Nitrogen peak intensity of the tert-butyl group in (1) has been used.
Figure 4: Pienna-Hoos plot: the intercept gives ϕ_{ij}, the slope gives r_{ij}.

Figure 5: Uehara-Heller plot: the intercept at $\xi = 0$ gives $\frac{\phi_{ij}}{\xi}$, the intercept at $\xi = 1$ gives r_{ij}, $\beta = 0.31$.
concentrations of monomers (1) and (2), and \(x \) = the molar ratio of these monomers in the copolymers. This analysis is shown in Fig. 4.

In the calculations, \(\bar{q} \), instead of \(q \) has been used, since simulation experiments (21) show that for the present pair of \(r \)-values and degree of conversion any possible deviations of these \(r \)-values, introduced by substituting \(q_0 \) for \(q \), will be within the error intervals given for the Fineman-Ross method. Moreover, in Fig. 4 the experimental points derived from relatively high conversion (30\%) experiments do not deviate significantly more from the drawn linear fit than do the points pertaining to lower conversion experiments. In the method designed by Kelen-Tudos for low conversion, the experimental points are symmetrized by introducing the parameter \(\beta = \left(\frac{P_{\min}}{F_{\max}} \right)^{1/2} \) in the dependent variable \(\zeta = F(5 + F) \) and \(\eta = G(5 + F) \). According to the latter method, data contained in Fig. 4 have been replotted in Fig. 5. Reactivity ratios calculated from Fig. 4 and 5 are given in Table 2, which shows that the results of both methods are in good agreement. Obviously, the effect on \(r_1 \) and \(r_2 \) of symmetrization of the experimental points as occurs in the Kelen-Tudos method is negligible. The values of \(r_1 \) and \(r_2 \) found here (1.14 \pm 0.05 and 0.47 \pm 0.05, respectively) deviate considerably from the values recently reported by Sloys van Treslong et al. (16), viz. 1.8 \pm 0.2 and 0.76 \pm 0.11, respectively.

<table>
<thead>
<tr>
<th>Method of data</th>
<th>(r_1)</th>
<th>(r_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F = 0)</td>
<td>1.14 \pm 0.05</td>
<td>0.47 \pm 0.07</td>
</tr>
<tr>
<td>(N = 1)</td>
<td>1.12 \pm 0.03</td>
<td>0.44 \pm 0.03</td>
</tr>
</tbody>
</table>
However, their experimental points do not seriously conflict with ours as would appear from plotting their data in Fig. 4. The main reason for the discrepancy in the reactivity ratio values is that although the latter authors used a calculation method essentially the same as the Fineman Ross procedure (19) only few experimental points within a very narrow range of monomer feed ratios were available, not enough for determining the reactivity ratios sufficiently accurately.

While summarizing, more accurate reactivity ratios will be obtained when using more experimental data, obtained from copolymerization experiments over a wider range of monomer feed compositions. If possible, the copolymer compositional analysis should be confirmed by a second technique. On these grounds, we believe our present data to be the more reliable.

Sequence Distribution

The distribution of monomer units in the copolymer is directly related to the reactivity ratios, the latter being measures of the probability of occurrence of homogenous sequences of either monomer unit. In order to get insight into the randomness of the monomer unit distribution along the polymer chain, the relative numbers of amine-amine, amine-alcohol, and alcohol-alcohol neighbouring groups as well as the number average sequence length of either monomer have been calculated (22) and compared with a situation of Bernouillian distributed, i.e., purely randomly, sequenced monomer units. In Table 3 the results are listed for a copolymer with \(\alpha = 0.43 \).

A more sensitive indicator of deviations from the Bernouillian distribution is the so-called monomer dispersity index, MD, which is defined as \(100/\bar{Z} \) where \(\bar{Z} \) is the number average sequence length (23). An MD value of 100 would indicate that all vinylamine units occur isolated in alcohol-amine-alcohol sequences. Any value below 100 is indicative of the occurrence of contiguous amine-amine units. In Fig. 6 values of MD of vinylamine units for copolymers formed
Figure 1: Non-zero dependency of synthetic model versus a.
(a) is the present synthetic model
(b) is a hypothetical bimodal type capping

Table 1: Estimated ideal abundance and number average sequence

<table>
<thead>
<tr>
<th></th>
<th>Present Capping</th>
<th>Perfectly Bimodal Capping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (g)</td>
<td>1.12, 2.12</td>
<td>1.35, 2.35</td>
</tr>
<tr>
<td>Length (u)</td>
<td>1.00, 2.00</td>
<td>2.00, 3.00</td>
</tr>
</tbody>
</table>

(a) i: sample with i; j: sample without
(b) $i_1 = 1.22$, $i_2 = 0.44$, $i_3 = 0.26$
according to the present pair of \(r \)-values as well as for a hypothetical perfect Bernouillian type copolymer have been plotted versus the copolymer composition \(c \). From the calculations (Table 3 and Fig. 6) it may be concluded that in the reaction of NVTEC with VAc random copolymers are formed with a slight tendency toward alternation. These copolymers are therefore eminently suitable as polymeric ligands in a study on the relation between base density within a polymeric thiol oxidation catalyst and catalytic activity. The results of this study will be reported separately.

Acknowledgements

The authors would like to thank Mr. W.J. Kingma for his assistance in the NVTEC synthesis, Dr. F.L.M. Houtus for his support in the evaluation of reactivity ratios, Mr. H. Eding for performing the elemental analysis, and Dr. ir. J.H. de Haan and Mr. L.J.M. van de Ven for the NMR results.

References

(2) Bayer, E., Gecheler, K. and Weingärtner, K., Makromol. Chem., 181 (1960), 385
(6) Teyssié, Ph., Deconinck, G., Teyssié, M.T., Makromol. Chem., 64 (1963), 51
(23) Reich, E.T. and Randall, J.C., Macromolecules, 15 (1982), 1402
Chapter VI

AUTOXIDATION OF THIOLS WITH COBALT(III) PHthalocyanine TETRASODIUM SULFONATE ATTACHED TO POLY(VINYLAMINE).

4. Influence of base density within the polymeric ligand.

W.H. Brouwer, P. Piet and A.L. German
Laboratory of Polymer Chemistry
Eindhoven University of Technology
P.O. Box 513
NL 5600 MB Eindhoven
The Netherlands

Summary

Water soluble, polymeric catalysts consisting of cobalt (III) phthalocyanine-tetracodium sulfonate, coordinatively bound to poly(vinylamine-co-vinylalcohol) have been used in the oxidation by oxygen of 2-mercaptoethanol to its corresponding disulfide.

An increase of the intrinsic activity of the catalytic sites was observed for increasing ethylamine (base group) content in the copolymers, while constant activation enthalpies indicated that the reaction mechanism remained unchanged.

From potentiometric titrations of the basic copolymers with hydrochloride and from catalytic activity measurements it could be deduced that reaction rate varied linearly with the mole fraction of charged monomeric units in these copolymers.

A reaction scheme has been proposed, suggesting that the thiol-thon is involved in the rate limiting step.
The present polymeric catalysts and Vit B12 were found to show similarities in their oxidation behaviour toward thiols.

Introduction

During the last decennia many papers concerning the oxidation of thiols have been published as its great importance in oil sweetening and biological processes became apparent.

Many catalysts are known for the oxidation of thiols, whereas especially porphyrins and phthalocyanines appeared to be useful catalysts \(^{(1,2)}\). It has been shown that Vit B\(_{12}\), containing cobalt within a porphyrin related structure, also catalyses the oxidation of thiols \(^{(3)}\).

In our laboratory we are using cobalt(II)phthalocyanine-tetrasodium sulfonate \(\text{CoPc(NaSO}_4)_4\), Fig. 1) attached to poly(vinylamide) (PVA), as a polymeric catalyst in the oxidation of 2-mercaptoethanol (MSE), causing a fifty-fold enhancement of reaction rate in comparison to polymer free CoPc(NaSO\(_4\))\(_4\) solutions. In the presence of 1,3 propene-diamine, which may be regarded as the monomeric analog of PVA, reaction rate appeared to be also much lower compared with the polymer attached CoPc(NaSO\(_4\))\(_4\) system \(^{(4)}\). It has been shown from

![Figure 1: Chemical structure of CoPc(NaSO\(_4\))\(_4\).](image-url)
viscosity (5) and ESR measurements (6) that the metal centre of CoPc(\(\text{NaSO}_3\))_4 is coordinated by five nitrogen atoms at most, when attached to PVAm. However, the importance of Coulombic attraction between the fourfold negatively charged CoPc(\(\text{SO}_3\))_4^- ion and the positively charged PVAm must not be ruled out and may also contribute to the bonding.

So far, little is known of the detailed kinetics of the thiol oxidation by polymer bound CoPc(\(\text{NaSO}_3\))_4. Only a few studies with porphyrins and phthalocyanines attached to polymers and polymeric sorbents have been published (7,8).

In order to reveal the essence of the observed enhanced activity when using CoPc(\(\text{NaSO}_3\))_4 attached to PVAm as a catalyst the relations between catalytic activity on the one hand and pH, viscosity, reagent and catalyst concentrations, temperature and ionic strength on the other hand were investigated (9,10). Kinetic resemblance was found with the action of Vit B12 derivatives in the oxidation of thiols. Recently we have shown that the enhanced basicity of low molecular weight PVAm with respect to high molecular weight PVAm caused an increase in reaction rate. Local thiol-anion concentration in the vicinity of the oxidation sites was assumed to be enhanced by the more basic character of low molecular weight PVAm (4).

Now the effect of local base strength has been investigated by varying the amine group density within the polymer chain, by intercalation of non-charged spacer groups of variable length. For this purpose we have synthesised random copolymers of vinylamine and vinylalcohol (PVAm-co-VAL).
Experimental

Copolymers of vinylamine and vinylalcohol have been synthesised by acid hydrolysis of poly(N-vinyl-tert-butylcarbamate-co-vinylacetate) (PVTC-co-VAc) as described elsewhere (11). Different molefractions of ethylenamine, α, in the copolymers could be obtained by varying the initial monomer feed ratio of N-vinyl-tert-butylcarbamate and vinylacetate. The total conversion was controlled not to exceed 30%, in order to prevent heterogeneous copolymer formation.

Values of α were obtained from elemental analysis (N-content) of the pre-copolymers. The number average molecular weight of these polymers was determined in toluene with a Hewlett Packard 502 high speed membrane osmometer operating at 37°C.

In Table I, monomer feed, copolymer composition data, number average molecular weights and degree of polymerization (D.P.) have been listed.

After hydrolysis and elution through an anion-exchange column (Amberlite IRA-401), stock solutions of copolymers were stored under nitrogen, to prevent absorption of CO₂.

| Sample | Molefraction of
PVTC in the feed | Molefraction of
PVTC in the copolymer (α) | Mw (g/mole) | DP |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.00</td>
<td>1.00</td>
<td>22</td>
<td>134</td>
</tr>
<tr>
<td>II</td>
<td>0.80</td>
<td>0.81</td>
<td>50</td>
<td>210</td>
</tr>
<tr>
<td>III</td>
<td>0.66</td>
<td>0.73</td>
<td>49</td>
<td>313</td>
</tr>
<tr>
<td>IV</td>
<td>0.56</td>
<td>0.65</td>
<td>49</td>
<td>328</td>
</tr>
<tr>
<td>V</td>
<td>0.45</td>
<td>0.56</td>
<td>23</td>
<td>280</td>
</tr>
<tr>
<td>VI</td>
<td>0.35</td>
<td>0.45</td>
<td>22</td>
<td>287</td>
</tr>
<tr>
<td>VII</td>
<td>0.28</td>
<td>0.39</td>
<td>22</td>
<td>284</td>
</tr>
<tr>
<td>VIII</td>
<td>0.13</td>
<td>0.20</td>
<td>69</td>
<td>708</td>
</tr>
<tr>
<td>IX</td>
<td>0.06</td>
<td>0.10</td>
<td>73</td>
<td>931</td>
</tr>
<tr>
<td>x⁵⁰</td>
<td>-</td>
<td>-</td>
<td>72</td>
<td>1636</td>
</tr>
</tbody>
</table>

α) poly(vinylalcohol) obtained from Roch Light Laboratories, England.
The molar N-group concentration \(c_{\text{N}} \) was determined by potentiometric titration with HCl (0.03 N) in 2 M NaCl.

Catalytic activity measurements were carried out isobarically in an all-glass thermostated Warburg apparatus, equipped with a mechanical glass-stirrer. Oxygen consumption rates were measured with a digital flow meter equipment.

The polymeric catalyst was prepared by adding an aqueous solution of CoPc(\(\text{NaSO}_3 \)) to a copolymer solution in water, resulting in a coordinatively bound polymer complex. CoPc(\(\text{NaSO}_3 \)) concentration was 1.9 \(10^{-7} \) M under reaction conditions. The catalyst solution was degassed twice and saturated with oxygen. The reaction was started by adding the 2-mercaptoethanol to the reaction vessel with a syringe. Initial reaction rates were calculated from the oxygen consumption during the first minute of reaction. Limitations of oxygen transport from the gas phase to the liquid were precluded by operating at a high stirring speed, viz 2300 r.p.m., as described earlier (9).

Results and Discussion

Previous investigations (9) have shown that the oxidation of 2-mercaptoethanol catalysed by FVAu bound CoPc(\(\text{NaSO}_3 \)) can be described by Michaelis-Menten kinetics (12) which means that in the reaction mechanism the rate determining step takes place subsequent to enzyme-substrate complex formation:

\[
E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P
\]

\[
v = k_2 [ES]
\]
where [E] = unbound enzyme, [ES] = enzyme-substrate complex and
P = product. A plot of reciprocal reaction rate versus reciprocal
substrate concentrations [S], a so-called Lineweaver-Burk plot, yields
$(k_2[E_0])^{-1}$ as intercept, and extrapolation to $v^{-1} = 0$ yields $-K_m$
as abscissa:

$$\frac{1}{v} = \frac{1}{k_2[E_0]} + \frac{k_2}{k_1[E_0]} \cdot \frac{1}{[S]} \quad (2)$$

where $K_m = \frac{k_{-1} + k_2}{k_1}$ (for $k_2 << k_{-1}$; $K_m \equiv \frac{1}{k_0} = \frac{k_{-1}}{k_1}$) and

$[E_0] =$ total enzyme concentration, i.e. $\text{CoFe(NaSO}_3\text{)}_4$.

This type of kinetics has been observed with respect to both reactants,
and thiol and oxygen. At O_2 pressures above 0.1 MPa (8 K_m O_2)
the saturation plateau was reached as no further pressure
dependence was observed (9).

For the present polymer VIII ($\alpha = 0.20$) we have verified the
reaction rate to be independent of oxygen pressure around 0.1 MPa (at
0.05 MPa reaction rate was 90% of that at 0.1 MPa). All experiments
reported in this paper, therefore, have been performed at 0.1 MPa
oxygen pressure, while fairly high polymer concentrations have been
used to avoid any effects of the molecular weight of the polymer
on reaction rate (4).

For copolymers of different amine content (II $\alpha = 0.81$, VIII,
and IX $\alpha = 0.10$) the apparent reaction constants k_2 and K_m
have been evaluated from Lineweaver-Burk plots, shown in Fig. 2 for
II and VIII, according to eq. 2.

In Fig. 3 Arrhenius plots are shown for copolymers II and VIII.
It has been shown earlier (10) that ΔH_m is small in comparison to ΔH_2°,
therefore the overall activation enthalpy virtually equals ΔH_2° at high
thiol concentrations, as can be derived from eq. 2.

Values of $\Delta H_m = 298$ ΔH_2°, k_2 and K_m have been listed in
Table 2. This table shows that a four fold increase in amine group
Figure 2: Linear-free energy plots for systems containing compounds A to E (α = 0.81, 0.5) and VII (α = 0.20, 0).

\[\log k = 1.3 \times 10^{-2} M + 0.0012 \times (A)+ \times 1.2 \times 10^{-7} \times \phi \times C_{H^+} \times (H^+) \]

adjusted with water (0.1 M).

Figure 3: Arrhenius plots of \(k_2 \) for polymers as in Fig. 2.

\[\Delta H = 0.34 \text{ kcal} \text{ mol}^{-1} \text{ per concentration of} \phi \text{ as given in Fig. 2. The value of} k_2 \text{ has been approximated by} \]

\[k_2 = \frac{295}{C_0 (\text{water})^2} \times (1 + \frac{0.0012}{C_{H^+} \times (H^+)}) \]

Table 2: Effect of amine content in PIV-acetyl-al on some important reaction parameters at 298 K.

<table>
<thead>
<tr>
<th>α</th>
<th>Δφ</th>
<th>Δφ</th>
<th>10⁻³k_2</th>
<th>k_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kcal mol⁻¹</td>
<td>kcal mol⁻¹</td>
<td>kcal mol⁻¹</td>
<td>kcal mol⁻¹</td>
</tr>
<tr>
<td>1.00</td>
<td>43 ± 4</td>
<td>= 35 ± 10</td>
<td>4.3 ± 0.6</td>
<td>0.19 ± 0.01</td>
</tr>
<tr>
<td>0.81</td>
<td>29 ± 4</td>
<td>= 53 ± 10</td>
<td>4.4 ± 0.5</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td>0.63</td>
<td>42 ± 4</td>
<td>= 64 ± 10</td>
<td>3.7 ± 0.4</td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>0.36</td>
<td>36 ± 4</td>
<td>= 68 ± 10</td>
<td>2.4 ± 0.4</td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>0.20</td>
<td>36 ± 4</td>
<td>= 75 ± 10</td>
<td>1.9 ± 0.3</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td>0.10</td>
<td>41 ± 4</td>
<td>= 97 ± 10</td>
<td>1.2 ± 0.2</td>
<td>0.05 ± 0.01</td>
</tr>
</tbody>
</table>
content in the polymer chain ($\alpha = 0.20$ to $\alpha = 0.81$) causes a two-fold increase in the intrinsic activity of the catalytic sites, indicated by the values of k_2. The values of K_m remain unchanged and no significant dependence of ΔH° on α is being observed. As a result, it may be inferred that the reaction mechanism remains unaltered when varying base density in the polymer chain, and the apparent change in k_2 must be attributed to a change in apparent activation entropy ΔS°, including local concentrations (i.e., nearby the catalytic sites) of reactants involved in the rate determining step. Unfortunately, ΔH° cannot be determined with an accuracy sufficient to avoid overlap of the error intervals of ΔS°. As a consequence, the changes in ΔS°, though plausible, cannot be evidenced conclusively.

Since K_m hardly alters when k_2 changes almost four-fold, it seems that $k_2 < k_{-1}$ and no dramatic change in the apparent value of K_m is to be expected when increasing base density in the polymeric ligand.

In order to find a relation between a polymeric parameter and the observed catalytic activity, reaction rates have been measured at rather high thiol concentrations ($c_{-SR} = 0.3$ M, i.e., 3-4 K_m) for all copolymers. At these relatively high thiol concentrations, changes in reaction rate in fact reflect changes in k_2. Ethylenamine unit concentration was fixed at $c_{-NH} = 1.5$ mM (except for polymer X) and pH was maintained at 7.8.

Fig. 4 (a) shows reaction rate as a function of α in the polymer chain. It is clearly shown that in the absence of basic amine groups ($\alpha = 0$) reaction rate is virtually zero and reaction rate does not increase linearly with α but instead levels off with increasing values of α. It might be suggested that the sequence distribution of vinylamine units in the copolymer is related to the observed pattern of catalytic activity. This was investigated by calculating the number average block length \bar{X} of ethylenamine sequences in the copolymers with various α, from the monomer feed and copolymer composition data given in Table 1, and the reactivity ratios of NVTBC and VAc in benzene. The latter were determined as described elsewhere (11) and found to
be $\Gamma_{\text{HTBC}} = 1.12$ and $\Gamma_{\text{VAc}} = 0.46$ under the relevant conditions. In Fig. 4 (C) the results are shown, revealing that the course of the catalytic activity versus α does not coincide with the dependence of \bar{N} on α.

Another important polymeric parameter may be the degree of charge on the polymer, since this is expected mainly to determine the local concentration of thiolate ions by electrostatic attraction between RS^- and the positively charged polymer chain.

The pH as a function of the degree of protonation, α, of the amine groups in the copolymers has been determined by potentiometric titrations of all of the basic copolymer solutions ($\epsilon_{-\alpha} = 0.01$ M) with HCl (0.03 M) at 22 ± 1°C in the absence of salt. The complete titrations were extended over a period of at least 20 minutes. The degree of
of protonation, \(\alpha \), was calculated as follows:

\[
\alpha = \frac{c_{H^+}^{\text{added}} - c_{H^+}^{\text{free}} - c_{\text{OH}}^{\text{free}}}{c_{N}}
\]

where \(c_{H^+}^{\text{added}} \) is the molar proton concentration as resulting from added HCl; \(c_{H^+}^{\text{free}} \) and \(c_{\text{OH}}^{\text{free}} \) are the molar concentrations of free protons and hydroxyl ions measured in the titration vessel, respectively.

Fig. 5 shows the pH versus \(\alpha \) at four values of \(\beta \) (for the sake of clarity not all curves have been drawn). Evidently the intrinsic basicity of the amine groups increases with decreasing \(\beta \), which must be attributed to a decreased nearest-neighbor interaction when the amine groups find themselves more separated in copolymers with a high vinyl alcohol content (14). In Fig. 4 (C) this degree of separation of

![Graph showing pH versus \(\alpha \) at four values of \(\beta \)](image-url)

Figure 5: pH versus the mole fraction of charged amine groups, \(\alpha \), for \(\beta = 0.20 \) (a); \(\beta = 0.45 \) (b); \(\beta = 0.80 \) (c) and \(\beta = 1.00 \) (d).

Curves were derived from potentiometric titrations with HzI 0.02 N; \(c_{\text{OH}} = 0.01 \) N.
amine groups is shown by the occurrence of the asymptote $\bar{n} = 1$ when α adopts low values. Nonetheless, \bar{n} is only a qualitative measure for the degree of separation since amine group interactions are not exclusively of the nearest neighbor type.

It can easily be seen that the degree of charge on the copolymer chain (i.e. the mole fraction of charged monomeric units) at a certain pH value is represented by a.c. In Fig. 4 (a) a.c. is plotted versus α at pH $= 7.8$, being the pH during the catalytic activity measurements. The resemblance between the curves of a.c. versus α, Fig. 4 (a), and ν versus α, Fig. 4 (e) is striking. This conformity is confirmed by Fig. 6, where reaction rate is shown to vary linearly with polymer charge.

The polymeric catalyst in reaction solution, the latter containing a large excess of thiol with respect to amine groups, may be regarded as a concatenation of positively charged rod-like segments, surrounded by a diffuse double layer of negatively charged counter ions, i.e. thiolate ions. Accordingly, the local thiolate ion concentration in the vicinity of the oxidation sites (CoF(30) $^{4-}$) is governed by the polymer charge.

In view of the observed linear increase of reaction rate with polymer charge it seems therefore that the thiol anion is involved in the rate determining step.

![Graph](image)

Figure 6: Reaction rate, ν, versus the mole fraction of positively charged monomeric units in the copolymer, a.c., derived from Fig. 4.
On the other hand the complexation of CoPc(SO$_3$)$_4^{4-}$ to the charged polymer chain may also depend on polymer charge. From ultrafiltration experiments with PVAm solutions containing CoPc(NaSO$_3$)$_4$ (Co/P = 1:200) it appeared, however, that blue CoPc(SO$_3$)$_4^{4-}$ could not be rinsed out. This behaviour appeared to be independent of the pH in the range pH = 4-11 and as a consequence independent of the polymer charge. This in contrast with the polymer free CoPc(NaSO$_3$)$_4$ solutions, which passed the membrane easily.

From these observations it may be inferred that due to the large excess of amine ligands with respect to Co as well as the high charge of the CoPc(SO$_3$)$_4^{4-}$ ion, practically all CoPc(SO$_3$)$_4^{4-}$ will be present in the polymer domain under the relevant conditions.

It is also not probable that the rate dependence on the ethylamine mole fraction in the polymeric ligand can be explained from axial coordination effects, since the CoPc(NaSO$_3$)$_4$ in monomeric 1,3 propandiamine solution appeared to be much less active than the polymer attached CoPc(NaSO$_3$)$_4$.

Another polymeric property, related with polymer charge is the polymer conformation. It may be assumed that the expansion of the polymer chain is enhanced by increasing chain charge. Conformation may affect catalytic activity, but neither transport limitations of reactants or products by coil diffusion nor a change of the reaction mechanism is to be expected in the light of the observed constancy of ΔH° even at low pH values.

According to the foregoing experimental observations a preliminary reaction scheme may be proposed as shown in Scheme 1 eq. 1-3. This scheme is consistent with the observed Michaelis-Menten kinetics in thiol and oxygen, although the rate limiting step (eq. 3 in scheme 1) is first order in local thiolate ion concentration. It may be assumed that at neutral pH this local concentration is not affected very much by the thiol concentration in the bulk and therefore Michaelis-Menten kinetics in thiol is still observed. Another interesting feature, following from the observed Michaelis-Menten kinetics with respect to
thiol is that obviously not thiolate but thiol interacts mainly with the metal centre (eq. 1, scheme 1). This is not so unexpected since the electrostatic repulsion between the thiolate ion and the four-fold negatively charged CoPc(SO$_3^-$)$_4$ may hinder the approach of the metal centre by RS$,^-$, although the negative charge of the CoPc(SO$_3^-$)$_4$ will be shielded by the positive polymeric charge to some extent. Probably fast proton abstraction will be concomitant with or subsequent to complex formation. In this train of thought it can be understood that the nucleophilic attack by RS^- according to eq. 3 in scheme 1 will be rate determining.

Similar kinetic observations have been made by Nome and Fendler (15) in the investigation of the oxidation of L-cysteine by Vit B$_{12a}$. They showed the equilibrium formation of a cysteine-Vit B$_{12a}$ complex prior to the rate-limiting step and the rate constant k_2 appeared to increase linearly with cysteine concentration at fixed pH, while k_2 increased exponentially with increasing pH, clearly indicating that the
rate determining step was first order in cysteinate ion.

The formation of H_2O_2 (eq. 3 in scheme 1) in the polymeric catalyst system at neutral pH has been shown earlier (16,8), although it has not been proven to occur stoichiometrically with the formation of RSSR, probably due to further reaction of H_2O_2 with thiol. Recently Jacobsen (17) unequivocally has shown that in the aquo cobinamide (a Vit B$_{12}$ derivative) catalyzed oxidation of various thiols H_2O_2 was formed stoichiometrically with RSSR.

Obviously, in the oxidation of thiols to disulfides the polymeric catalyst and Vit B$_{12}$ have many kinetic features in common, which may be partially attributed to the similarities in environment of the metal centres in both catalysts (18). A study, further revealing the polymeric effects in the polymeric catalysis of thiols is in progress.

Conclusions

In this investigation dealing with the effect of base density in the polymeric ligand on the catalytic activity of a water soluble polymeric catalyst in the oxidation of thiols it has been shown that:
- there is no direct relation between base group block length and the intrinsic activity of the catalytic sites;
- the apparent rate determining constant k_2 varies linearly with the charge on the polymer chain, while k_2' is not affected significantly;
- within the experimental error the activation enthalpy ΔH°_2 does not change with the amine content in the copolymer inferring that the reaction mechanism remains unaffected when varying base density within the polymeric ligand;
- it becomes plausible that the thiol anion is involved in the rate determining step (eq. 3, scheme 1) and that mainly RSH instead of \text{RSSR} is involved in the complex formation step (eq. 1, scheme 1);
- \text{CoPc(NaSO}_{3\text{H}})_{4} attached to PVAm shows kinetical resemblance with Vit B$_{12\text{a}}$ in the oxidation of thiols to disulfides.
Acknowledgements

The authors are indebted to Prof. L.A.A.S. Suytjerman, Prof. E. Peirs and Dr. T.P.M. Beelen for stimulating discussions and for a critical reading of the manuscript for this paper.

References

(3) Paul, J.L., Biochem. J. 66 (1963), 296
(12) e.g. Cornish-Bowden, A., Fundamentals of enzyme kinetics, Butterworths London 1979
(14) Katchalsky, A., Mazur, J. and Spitnik, P., J. Polymer Sci. 23 (1957), 513
Chapter VII

AUTOXIDATION OF THIOLS WITH COBALT(II) PHTHALOCYANINE TETRASODIUM SULFONATE ATTACHED TO POLY(VINYLMINE).

5. Effect of surfactant and thiol variation.

W.M. Brouwer, P. Piet and A.L. Corman
Laboratory of Polymer Chemistry
Eindhoven University of Technology
P.O. Box 513
NL 5600 MB Eindhoven
The Netherlands

Summary

The autoxidation of various thiols, viz. 2-mercaptoethanol (ME), 3-mercapto-1,2-propanediol (ME), mercaptoacetic acid (MA) and dodecylmercaptan (DM) with cobalt(II)/phthalocyanine-tetrasodium sulfonate (CoPc(NaSO_4)_4) as a catalyst in the absence and presence of the basic poly(vinylnitramine) has been determined.

Differences among the oxidation rates of the various thiols are discussed qualitatively in terms of pH, charge, water solubility and size of the substrates.

The effect of anionic, cationic and nonionic surfactants on the oxidation rate of these thiols is investigated. In the absence of polymer the effect of various types of surfactant is small for the hydrophilic ME, MP and MA. However, for DM a micellar, catalytic effect
of cationic surfactant is observed, whereas anionic surfactant retards the reaction.

When CoFcs(NaSO₃)₄ is used in the presence of poly(vinylamine) large differences are observed between the effects of various types of surfactant on the oxidation rate of ME. Nonionic surfactant does not affect the high reaction rate, whereas cationic and anionic surfactants appear to diminish the rate considerably, even at concentrations far below the critical micelle concentration. These effects are discussed in terms of interactions between the polymer catalyst and surfactant. Furthermore, similarities and differences between polymeric catalysis and micellar catalysis in thiol oxidation are shown.

Introduction

The oxidation of thiols to disulfides is an important process in oil sweetening and in biological systems.

Among the catalysts known for this autoxidation (1) cobaltphthalocyanines in alkali appeared to be very efficient (2). Attachment of the water soluble cobaltphthalocyanine-tetrasodium sulfonate (CoFcs(NaSO₃)₄, see Fig 1) to the basic poly(vinylamine) (PVAm) resulted in a 30-50 fold enhancement of the oxidation rate of 2-mercaptoethanol (ME) in water compared with the CoFcs(NaSO₃)₄/OH⁻ system (3).

![Figure 1: Chemical structure of CoFcs(NaSO₃)₄.](image_url)
The promoting power of the PVA is due to prevention of dimerization of the CoFe(NaSO₄)₄ catalyst on the one hand and enrichment of both the weakly acidic substrate and the CoFe(NaSO₄)₄ in the basic coils on the other hand. In several papers the effect of pH (4,5), molecular weight (6), polymer chain charge (7), ionic strength and substrate concentration (8) on reaction rate were reported. In all these investigations ME was used as substrate, serving as a model for other thiols. In the present paper we extend our investigation to some other thiols, i.e. 3-mercapto-1,2-propanediol (MD), mercaptoacetic acid (MA) and dodecylmercaptan (DM), the latter being sparingly soluble in water. The catalytic activity of both the conventional system (CoFe(NaSO₄)₄/OH⁻) and the polymeric system (CoFe- (NaSO₄)₄/PVA) in the conversion of these thiols is tested.

Furthermore, for both catalyst systems the effect of surfactants on the reaction rate is studied, since the conversion of smelly thiols (they can be detected in ppb) in surfactant containing reaction systems is an important issue in industry, that forms a challenge in particular for chemists working in the field of polymeric and micellar catalysis.

Some of the results concerning the effect of surfactants on poly-electrolyte catalysis may be valid for other polyelectrolyte catalyst systems, provided only electrostatic interactions are playing a role in the catalysis.

Experimental

Hexadecyltrimethylammoniumbromide (CTAB, Fluka, purum), sodiumdodecyl-
sulfate (SDS, Fluka, purissimum) and poly(oxyethylene) 30-monophenol
(Antarox CO-880, CAF, abbrev.: A-CO-880) were used as supplied.

Aquous solutions of poly(vinylaminehydrochloride) (PVA) w/v; Polyesiences Inc. Warrington U.S.A., \(\bar{M}_n = 5 \times 10^4 \) g mol⁻¹, from viscosity experiments in water containing 0.01 M NaOH and 0.1 M NaCl (9) were eluted through an Amberlite IRA 401 anion exchange column to remove the
chloride. The PVAm solutions thus obtained were stored under nitrogen to prevent absorption of CO₂.

2-Mercaptoethanol and dodecyl mercaptan were distilled; the 3-mercaptop-1,2-propanediol and mercaptoacetic acid were used as supplied. Their purity (>99%) was determined iodometrically prior to use. CoPc(AsO₃)₄ (kindly provided by Dr. T.P.M. Beelen) had been synthesised by a method analogous to that of Weber and Busch (10) as described by Zwart et al. (11).

Initial reaction rates were determined by monitoring the oxygen consumption during the first minute of reaction. The measurements were carried out at 25°C as described previously (8).

The polymeric catalyst was prepared by mixing aqueous solutions of PVAm and CoPc(AsO₃)₄ resulting in a polymer-organometal complex. The mixture was degassed twice and saturated with oxygen over a period of 20 min while stirring vigorously. The reaction was started by adding the substrate to the reaction vessel by means of a syringe.

In the micellar catalyst system the substrate was added after degassing and saturating the soap mixture with oxygen. The reaction was started 30 s hereafter by adding the CoPc(AsO₃)₄ catalyst, thus obtaining best reproducibility.

The turbidity τ during turbidimetric titration of the polymeric catalyst with SDS in the presence of MB was obtained from transmission measurements: τ = (log I₀/I)/b where I₀ and I are the intensities of the incident and transmitted light, respectively; and b is the optical path length of the cell used. A Carl Zeiss PMQ II spectrophotometer operating at 600 nm wavelength was used with 1 cm cells.

Viscosity measurements on filtered solutions were carried out at 25.0°C in a Hewlett Packard automatic solution viscometer of the Ubbelohde type. Measurements were conducted twenty minutes after addition of the thiol, since small time effects were observed.
Results and Discussion

The CoFe(NaS0₄)₄/OH⁻ catalyst system

Effect of thiol variation

In several papers attention was paid to CoFe(NaS0₄) in alkaline medium as a catalyst for the autoxidation of ME (1, 11, 32). The alkali was needed to enhance the dissociation of the weakly acidic thiol producing thiol anions, the latter generally being regarded as the reactive species.

In order to get insight into the differences among the reactivities of the various thiols, as well a to compare this catalyst system with those containing surfactant or polymer, the reaction rate at optimal pH was measured for ME, MP, MA and DM. The results are listed in Table 1, column 3-4. The negative logarithm of the dissociation constants of the sulfhydryl group of these thiols is listed in column 2.

Obviously the pH optimum increases with increasing pH, which corroborates the assumption that the thiol anions play a dominant role in the reaction mechanism. Moreover, for the almost equally acidic substrates ME and MP practically equal pH optima and reaction rates are observed. The oxidation rate of MA is considerably lower and only slightly dependent on pH. Probably the pH dependent dissociation of the carboxylic acid group will contribute to this behaviour, since at lower pH the low thiol anion concentration and at higher pH the high ionic charge (-2) will hinder a fast autoxidation. A similar rate difference has been observed in the Vit B₄₂ catalysed oxidation of ME and MA (16).

The oxidation rate of DM is low in comparison with the other thiols, probably due to lower water solubility and the large size of the substrate.
Table 1

<table>
<thead>
<tr>
<th>Triant</th>
<th>pK<sub>opt</sub></th>
<th>optimal pH</th>
<th>pK<sub>i</sub></th>
<th>pK<sub>i</sub></th>
<th>pK<sub>i</sub></th>
<th>pK<sub>opt</sub></th>
<th>pK<sub>opt</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>2-acetylethanol (AAE)</td>
<td>10.7</td>
<td>7.3</td>
<td>5.9</td>
<td>3.1</td>
<td>3.1</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>2-acetylethanol (HE)</td>
<td>9.7</td>
<td>12</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Mesoporous silica (MS)</td>
<td>10.4</td>
<td>12.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Dodecyltrimethylammonium (DTMA)</td>
<td>11.8</td>
<td>14</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

a) Duplicate measurements. Thiol concentration = 0.07 M. Initial rates determined at pH optimum. pK_i is expressed relative to the rate in the corresponding surfactant-free CuCl/NaClO₄/DMF system. Rates expressed in alkyl- and CuCl₂/NaClO₄ mix.
b) ref. 13
c) ref. 14
d) activation by ref. 15
e) reaction rate is only slightly dependent on the pH
f) Surface concentration: 0.07 M. 200 µmol/dm³
- poly[acrylamide] (PAAM) (200 µmol/dm³); (TMA) = trimethylammonium

g) Polyether concentration (measuring units): 0.5 µg^{−1} g^{−1}
Effect of surfactant

The effect of surfactant on the thiol oxidation was investigated at the pH optimum. An anionic, a nonionic and a cationic surfactant were used, viz. sodium dodecyl sulfate (SDS), poly(oxyethylene) 30-nylonphenoxy (A-CO-680) and hexadecyltrimethylammoniumbromide (CTAB) at 0.01 M. In Table 1, column 5-7 the relative rates \(v/R \) compared with the surfactant free system (column 4) are listed. For the water soluble ME, MP and MA mostly a slight decrement of reaction rate occurs irrespective of surfactant type in comparison with the corresponding surfactant free reaction systems.

However, for the DM containing system an anionic surfactant retards the reaction; a nonionic surfactant acts rather indifferently, whereas a cationic surfactant causes a large enhancement. The latter observations are indicative of the occurrence of a so-called micellar catalysis in the oxidation of DM. The micellar catalytic action was first explained by Hartley (17) using simple electrostatic considerations: anionic micelles will retard reaction rates involving anions, whereas cationic micelles will cause the opposite effect. However, since for the present thioles only a micellar effect is observed for the long chain thiol DM, it seems that here also other than electrostatic, i.e. hydrophobic interactions, are playing a role.

The influence of thiol and surfactant concentration as well as the effect of ionic additives on the oxidation rate of DM by micellar catalysis will be the subject of the next subsection.

Micellar catalysis in the oxidation of dodecylmercaptan

The effect of thiol concentration on the cationic micelle catalyzed oxidation rate of DM appears to be of the saturation type and can be described with the Michaelis-Menten concept (18). This means that the rate determining reaction step takes place subsequent to substrate-catalyst complex formation:
\[E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P \]

Accordingly, linear plots of reciprocal initial reaction rate versus reciprocal substrate concentration are obtained (so-called Lineweaver-Burk plots):

\[
\frac{1}{v} = \frac{1}{k_2[S_0]} + \frac{K_m}{k_2[S_0]} \quad (\text{Eq}.)
\]

where \(v \) = initial reaction rate, \([E_0]\) = the total catalyst concentration, \(E \) = unbound catalyst, \(P \) = product(s), \([S]\) = initial substrate concentration and \(K_m = \frac{k_{-1}}{k_1} \) with \(k_6 = \frac{k_1}{k_{-1}} \) (\(K_m \) for \(k_2 \ll k_{-1} \)).

In Fig. 2 the Lineweaver-Burk plot is shown for the DM oxidation and in Table 2 the turn-over number \(k_2 \) and the Michaelis constant \(K_m \) are listed. These values will be discussed in relation with those obtained in the system CoPc(NaSO\(_4\))\(_4\)/PVAm in the next section.

In Fig. 3 the oxidation rate of DM is shown as a function of surfactant concentration. DM concentration is \(4 \times 10^{-2} \) M. Nonionic and anionic surfactant retard reaction rate. The rate enhancing effect of CTAB, in comparison with the surfactant free system CoPc(NaSO\(_4\))\(_4\)/OH\(^-\), exhibits a maximum at \(c_{\text{CTAB}} = 4 \times 10^{-3} \) M. A maximum often has been observed in micellar catalysis (\(19 \)) and was explained by solubilization of reactive anions in cationic micelles, thus making them less active.

In the present case it is possible that at this surfactant concentration part of the catalytically active anions, CoPc(SO\(_4\))\(_4\)^{-}, are solubilized in the cationic micelles, thus accounting for the decrease in rate at CTAB concentrations larger than \(4 \times 10^{-3} \) M (Fig. 3a).

The effect of ionic additives, viz NaCl, Na benzate and SDS, on the oxidation rate of DM is shown in Fig. 4. CTAB concentration was \(3.8 \times 10^{-3} \) M. It is obvious that NaCl, a salt with a small anion, hardly affects the reaction rate. The more hydrophobic benzate ion has more influence and the effect of SDS is dramatic. The latter substance
Table 2: Reaction constants in the oxidation of various thiols.

<table>
<thead>
<tr>
<th>Thiol</th>
<th>$p^* \times 10^3 h$</th>
<th>k_0 mole dm$^{-3}$s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-mercaptomethan (ME)</td>
<td>7.4 31 ± 4</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td>3-mercapto-1,2-propanediol (MHP)</td>
<td>7.4 30 ± 3</td>
<td>0.20 ± 0.01</td>
</tr>
<tr>
<td>cis-dodecylmercapto (DM)</td>
<td>13 3.9 ± 0.5</td>
<td>0.56 ± 0.01</td>
</tr>
</tbody>
</table>

a In polymeric system; $\text{Co(II)}(\text{NO}_3)_4 \cdot 6\text{H}_2\text{O}$; $\text{Co(II)}(\text{NO}_3)_4 \cdot 6\text{H}_2\text{O}$; $c_{\text{Co(II)}} = 1.9 \times 10^{-3}$ M; $T = 25.0^\circ$C

b In micellar system; $\text{Co(II)}(\text{NO}_3)_4 \cdot 6\text{CTAB}$; $c_{\text{Co(II)}} = 3.8 \times 10^{-3}$ M; $c_{\text{CTAB}} = 3.4 \times 10^{-3}$ M; $T = 25.0^\circ$C

![Figure 3: Effect of surfactant concentration on the initial reaction rate, v, of ME (polymer absent).](image)

- $v = \text{CTAB}$
- (c) 10^3, (d) 3000, (e) 5000 M
- $c_{\text{Co(II)}} = 3.8 \times 10^{-3}$ M; $c_{\text{pH}} = 0.04$ M; $pH = 12$
may be assumed to be entirely mixed up with CTAB in the micelles.
The inset in Fig. 4 shows that a complete loss of catalytic activity occurs at equally molar amounts of SDS and CTAB, viz. 3.0×10^{-3} M. The micelles may then be assumed to have zero net charge, and no catalytic activity is detected anymore.

From Fig. 4 it becomes clear that small, polar anions have little effect and large, hydrophobic anions have a large retarding effect on the micellar oxidation rate thus emphasizing that both hydrophobic and electrostatic effects play a role in micellar catalytic activity. The importance of electrostatic as well as hydrophobic interactions in micellar catalysis was earlier stressed by other investigators (19,20).
In contradistinction to the here observed small effect of NaCl on reaction rate in the micellar catalytic system, addition of NaCl in the polymeric catalytic system caused a considerable decrease in rate (8), emphasizing the importance of solely electrostatic interactions between substrate and catalyst in pure polyelectrolyte catalysis, where hydrophobic functionalities are absent.

The CoPc(NaSO\textsubscript{4})\textsubscript{4}/PVAm catalyst system

Effect of thiol variation

Complexation of CoPc(NaSO\textsubscript{4})\textsubscript{4} with aqueous basic PVAm yields a catalyst exhibiting a much higher activity and considerably lower pH optimum than the polymer free CoPc(NaSO\textsubscript{4})\textsubscript{4} system (Table 1, column 8-9). The occurrence of an optimum at lower pH can be qualitatively explained by the high concentration of basic groups within the polymeric coils at intermediate pH values in the bulk. For ME the pH-dependency of the oxidation rate has been investigated and discussed in more detail previously (4).

It is striking that, using the polymeric catalyst system, different oxidation rates are found for ME and MP, whereas no significant difference was found in the case of the polymer free catalyst system (see Table 1). In previous investigations on polymeric catalytical systems it was shown that the Michaelis-Menten concept could be applied to describe the effect of ME concentration on reaction rate (6-8). This concept also appears to be applicable to the oxidation of MP with the polymeric catalyst. In Fig. 5 Lineweaver-Burk plots are shown for both ME (a) and MP (b) at pH = 7.4. In Table 2 the values of \(k_2 \) and \(K_m \) are listed. Different values of \(k_2 \) and \(K_m \) are observed for the substrates ME and MP. It seems that the complex formation constant \(K_g (= K_m^{-1}) \) is larger for MP, but the apparent intrinsic activity of the catalytic sites is lower. Since both substrates possess practically identical dissociation constants, the observed differences in \(k_2 \) and \(K_m \) must originate from
differences in size.

For DM, oxidized in the micellar catalyst system, the value of K_a is in the same range as for ME and MF in the polymeric catalytic system (see Table 2). It may therefore be inferred that the substrate-catalyst formation equilibrium is not affected very much by the environment of CoPc(SO$_4$)$_{3/2-}$ (whether polymeric or micellar).

The turn-over number k_2 found for DM in the micellar system is lower than k_2 observed for ME and MF in the polymeric catalyst system. These differences must be ascribed to differences in reactivity of the substrates, since also in the surfactant and polymer free catalyst system, CoPc(NaSO$_4$)$_{3/2-}$, the oxidation rate of DM was ten times lower than that of ME and MF.

MA shows rather low oxidation activity in the polymeric catalyst system, probably due to (1) competition between carboxylate and thiolate for a site on the catalyst and (2) electrostatic attraction between the negatively charged reaction product (due to the COO$^-$ moiety) and the positively charged polymeric catalyst.
With DN as a substrate, no detectable catalytic activity is observed in the polymeric catalyst system. After stirring a PVA solution containing DN, flocculation phenomena are observed. Probably DN, being rather hydrophobic, will be rejected by the water phase and interact relatively strongly within the polymeric region. Therefore, DN may not be converted under these conditions.

Effect of surfactant

In order to elucidate the effect of surfactants on the behaviour of polyelectrolyte catalysts in thiol oxidation, the oxidation rate of ME in the polymeric catalyst system was measured upon the addition of increasing amounts of SDS, A-CO-880 and CTAB.

In Fig. 6 (a) the initial oxidation rate of ME is plotted versus the logarithm of the SDS concentration. Polymer concentration (repeating units) is 1.3 \(10^{-3}\) N. Initially, reaction rate is slightly enhanced, a maximum occurring at SDS/\(c_p\) = 0.2; adding more of the anionic surfactant

![Graph showing the effect of SDS concentration on the initial oxidation rate of ME](image)

Figure 6. Effect of SDS concentration on the initial oxidation rate, \(r_0\), of ME (polymer catalyzed) (b) and on the turbidity, \(T_1\), of the reaction solution (b).

[Details of the graph and experiment parameters are not transcribed]
causes a sharp decrease in reaction rate with an inflection point at
SDS/n = 0.8. Beyond this point, reaction rate is very low. This tremendous
effect of anionic surfactant on reaction rate occurs far below the
critical micelle concentration (cnc) of SDS (cnc$_{SDS}$ = 8 x 10$^{-5}$ M (21)).
The decrease in rate is accompanied by the occurrence of turbidity of
the reaction solution.

In separate experiments, the polymeric catalyst solution in the
presence of ME was titrated turbidimetrically with SDS (● in Fig. 4).
A maximum in turbidity was observed at SDS/n = 0.8. Addition of more
SDS led to complete transparency of the solution, but catalytic activity,
as shown in Fig. 6 (a), further decreased, though slowly. The increased
turbidity is caused by flocculation (22) of the polymeric catalyst upon
addition of SDS and can be explained by adsorption of SDS onto the
positively charged polymer. Addition of excess SDS resolubilizes the
polymer-surfactant complex (see Scheme 1) and the polymer solution
becomes transparent again. Similar adsorption phenomena were observed
for the interaction of ionic surfactants with oppositely charged
polymers (23,24) or latices (25), although phase separation and
resolubilization of the flocculated complexes were not always reported.
Analogous to colloid titrations of cationic polymers with anionic ones.

Scheme 1: Interaction of anionic SDS with positively charged PMAA.
(see for example (26)) the surfactant–polymer interactions cited above seem to occur stoichiometrically on the basis of charge.

Application of this concept to the present observations makes it plausible that (1) the catalyst is 80% charged (on the basis of repeating units), and (2) the inflection point in Fig. 6 (3), where the reaction rate becomes negligible, occurs at zero net charge of the polymer–surfactant complex. The latter result (2) is in complete agreement with our recent findings concerning the relation between the net polymer charge and reaction rate in copolymers of vinylamine and vinylalcohol (7).

In addition, the hydrophobic mantle, formed by SDS (Scheme 1), will expel ionic substrate out of the polymer domain. The value found here for the polymer charge (80%) at pH = 7.8 is higher than that found earlier from potentiometric titrations, viz. 40% (6). Probably due to an effective screening by the dodecylsulfate counter–ions, PAM behaves like a stronger polyelectrolyte and a higher degree of protonation is tolerated. This may also account for the initial slight increase of reaction rate at low SDS/PM ratios, where the rate enhancing electrostatic effect still dominates the rate retarding effect of the diffuse hydrophobic mantle. The same discrepancy was observed in poly(ethylenimine).

From colloid and potentiometric titrations the polymer charge at pH = 6.5 was found to be 65% and 32%, respectively (26).

During the preparation of this paper, preliminary results were published by Visser et al. concerning the enhancement of the catalytic activity of imidazoloc containing polymers of isocyanides in the hydrolysis of 2,4-dinitrophenyl acetate upon the addition of cationic surfactant (27). At the relevant pH values the polymer was negatively charged. They found similar phenomena of precipitation and resolubilization of the polymer–surfactant complex as well as an increase in chain charge when adding the surfactant. The increase of reaction rate was partially attributed to the hydrophobic mantle enhancing the local (hydrophobic) substrate concentration in the vicinity of the catalytical polymeric functions.
From these observations it may be inferred that in polyelectrolyte-
surfactant complexes the hydrophobic surfactant mantle may enhance or
retard reaction rate, depending on the hydrophobicity of the substrate.

In view of these findings with SDS, adsorbing on the PAM, it is
conceivable that DM also strongly adsorbs on the polymer, which
accounts for the observed flocculation of PAM in the presence of DM,
as mentioned in the preceding section.

In Fig. 7 the effect of the nonionic surfactant A-CO-880 on the
oxidation rate of ME is shown, clearly indicating that catalytic
activity is maintained. Obviously this charged polymeric catalyst
is indifferent toward nonionic surfactant.

![Graph showing the effect of A-CO-880 concentration on the initial oxidation rate, v, of ME (polymer catalyst) (M). Other reaction conditions as in Fig. 4.](image)
Figure 8: Effect of CTAB concentration on the initial oxidation rate, \(\nu \), of MX (polymer catalyzed) (b) and on the specific viscosity of the polymer containing reaction solution, \(\eta_p \) (c). As a reference the effect on \(\eta_p \) of a simple 1:1 electrolyte (KBr) is shown (a). Other reaction conditions as in Fig. 6.

The effect of the cationic CTAB on the oxidation rate of MX is shown in Fig. 6 (a). Polymer concentration is 1.5 \(10^{-3} \) M. A decline in reaction rate is observed starting at very low concentrations of surfactant (\(c_{CTAB} \ll c_{MCb} \)) \(= 9 \times 10^{-4} \) M (28). Since the charges of surfactant and polymer have the same sign, direct polymer-surfactant interactions such as adsorption are less probable. However, monitoring the specific viscosity of the polymeric catalyst solution in the presence of CTAB (Fig. 8 (b)) and of KBr, as a reference (Fig. 6 (a)), clearly shows that in low concentrations CTAB has a marked effect on viscosity, whereas a simple 1:1 electrolyte (KBr) exhibits no drastic effect. Obviously, CTAB has a more charge shielding effect than KBr.
The great sensitivity of catalytic activity to small amounts of CTAB may be due to interactions directly with the CoFe(II,III)₄⁺ moity.

General Discussion

As follows from the observations above, thiols can be oxidized until scenchlessness with high rates using polyelectrolyte or micellar catalysts. In order to select the proper catalyst system for the appropriate substrate, it may be useful to devise the thiol substrates into a polar and a hydrophobic group. Table 3 shows the catalytic activity expected for these types of substrate in the various catalyst systems. The hydrophobic substrates are best oxidized in a cationic micellar system, whereas the polar thiols are oxidized very rapidly with a positively charged polymeric catalyst (see also Scheme 2). In the latter catalyst system, nonionic surfactant will not affect reaction rate, even when present in large concentrations. Other types of

<table>
<thead>
<tr>
<th>Thiol Type</th>
<th>CoFe(II,III)₂⁺/OH⁻</th>
<th>CoFe(II,III)₄⁺/PVAm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>anion.</td>
</tr>
<tr>
<td>surf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polar</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>hydrophobic</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

1) surf = polymer
2) large enhancement of reaction rate
3) no significant change of reaction rate
4) retardation of reaction rate
Scheme 2: Schematic representation of thiols in polymeric and micellar catalysis.

surfactant will diminish rate, especially at higher surfactant concentrations due to surfactant interactions with the polymer catalyst.

Several catalytic effects have been reported in this paper and though in most cases sound explanations for these observations could be presented, some of them are preliminary and require further investigations, viz.:

(1) The origin of the maximum in the plot of DM oxidation rate versus CTAB concentration (Fig. 3)

(2) The rate retarding effect of cationic surfactant on the cationic polymeric catalytic activity (Fig. 6). Does it originate from surfactant interaction with the CoFe(SO$_4$)$_2^{4-}$ moiety?

(3) The precise cause of relatively low DM conversion rate in polymer and micelle free, aqueous CoFe(NaSO$_4$)$_4$ solutions; which effect
dominates rate: the low water solubility, its large size or the high pK_a?

(4) The low oxidation rate of MA in the polymeric system is mainly caused by (i) competition between the COO^- and RS^- moiety for coordination with the phthalocyanine, (ii) a slow product release from the polymeric domain, due to electrostatic attraction or by (iii) an enhancement of ionic strength due to the twofold negatively charged product?

Unfortunately, these points could not be elucidated as yet.

Till now, in thiol oxidation catalysis most attention has been paid to the (polymeric) catalysis of polar thiols. However, in many industrial systems the oxidation of more hydrophobic thiols is relevant and therefore more attention has to be paid to catalyst systems, capable of oxidizing these substrates. Micellar systems, where both electrostatic and hydrophobic interactions are playing a role, will be most promising for this purpose.

Conclusions

- Good water soluble thiols can be oxidized at high rates when CoPc(NaSO_3)_4 as a catalyst is used in the presence of the basic PVA. For the sparingly water soluble, amphipolar DM no catalytic effect was observed in this catalyst system.
- The oxidation rate of DM is largely enhanced when CoPc(NaSO_3)_4 is used in alkaline medium in the presence of cationic micelles. Anionic micelles retard the reaction and nonionic micelles retard to a lesser extent. The oxidation rate of the good water soluble thiols is, however, only slightly affected by addition of surfactants.
- In the cationic polyelectrolyte catalysis of ME anionic surfactant retards the reaction rate due to adsorption at the polymer chain, thus decreasing the net charge on the polymer and increasing hydrophobicity in the neighbourhood of the catalytic sites. Nonionic
surfactant does not affect catalytic activity, while cationic surfactant diminishes reaction rate, possibly due to interaction with CoPc(NaSO₄).n

- In the present polymeric catalyst system electrostatic interactions dominate, whereas in the micellar catalyst system also hydrophobic interactions between substrate and micelle play an important role.

References

(7) ibid, *J. Mol. Catal.*, accepted
(18) L. Michaelis and M.L. Menton, *Biochem. Z.* **49** (1913), 333

(20) N. Ise in A. Rembaum and E. Selégyi (eds): *Polyelectrolytes and Their Applications*, Reidel, Dordrecht 1975, p. 71

(28) P. Mukerjee and K.J. Mysels: *CNC of Aqueous Systems*

National Standard Reference and Data System; Washington 1971
Chapter VIII

THE PROMOTING ROLE OF POLYCATIONS IN THE COBALT(III)PHTHALOCYANINE TETRASODIUM SULFONATE CATALYZED THIOL OXIDATION.

W.M. Brouw, P. Plot, A.L. Germain
Laboratory of Polymer Chemistry
Eindhoven University of Technology
NL 5600 MB Eindhoven
The Netherlands

Summary

The oxidation of 2-mercaptoethanol with polymer bound cobalt(II)-phthalocyanine catalysts was investigated. Poly(vinylamine) (PVA), poly(ethyleneimine) (PEI), poly(l-lysine) (PLL) and 2,4-, 2,6- and 8,10-tetrahydroxystilbene were used as polymeric ligands. All polymeric ligands appeared to enhance reaction rate considerably as compared with their monomeric analogs and they exhibited similar behavior towards the effect of salt and pH. Reaction rate appeared to increase almost linearly with the linear charge density on the ions, which is consistent with recent findings for copolymers of vinylamine and vinylalcohol.

Mainly three parameters seem to provide the enhanced polyoxotin catalytic effect: a high linear charge density on the polymer, a large
amount of base groups in the polymer domain and a low ionic strength in the reaction solution. Moreover, comparison of the linear charge density, catalytic activity and activation parameters of the ionene catalysts with those obtained earlier for the vinylamine-vinylalcohol copolymer shows that the presence of hydrophilic side groups has a promoting effect on the oxidation of the hydrophilic thiol.

From catalyst reuse experiments it appeared that the polyamine catalysts (PVA, PEI and PLL) have poor stability, but the ionene hydroxides can be reused many times, probably due to the chemical inertness of the quaternary ammonium groups in the ionenes.

Introduction

Cobalt(II)phthalocyanine is a well known catalyst for the oxidation of thioles to disulfides (1).

\[4 \text{RSSH} + O_2 \rightarrow 2 \text{RSSR} + 2 \text{H}_2\text{O} \]

Attachment of the water soluble cobalt(II)phthalocyanine-tetrasodium sulfonate (CoPe(NaSO_3)_4, Fig. 1) to poly(vinylamine) (PVA) caused a large rate enhancement compared with the monomeric analog 1,3-propanediamine (2). For this particular polymeric catalyst system the effect

![Chemical structure of cobalt(II)phthalocyanine-tetrasodium sulfonate.](image_url)
of pH \(^{(3)}\), ionic strength, substrate concentration, oxygen pressure, temperature \(^{(4)}\), and molecular weight of the polymeric ligand \(^{(2)}\) on the oxidation rate of 2-mercaptoethanol (RSE) to 2,2 dithio-diethanol (RSSR) was investigated. The polymeric catalyst exhibited an enzyme-like behavior, e.g. Michaelis-Menten kinetics (Scheme 1) with respect to thiol and oxygen and a bell shaped pH dependence.

Scheme 1.

\[E + S + O_2 \rightarrow E-O-S \rightarrow E + P \]

E stands for polymer bound CoPc(NaSO\(_{4}\))\(_{4}\); S for substrate (thiol) and P for products.

The enhanced polymeric catalyst activity was partially attributed to prevention of dimerization of CoPc(NaSO\(_{4}\))\(_{4}\) by the basic polymer coils and to enrichment of these coils with thiol-anions, the reactive species. The polymer attachment of CoPc(SO\(_{4}\)\(_{4}\))\(_{4}\) was attributed to coordinative and Coulombic interaction with the polymer \(^{(5,6)}\).

From catalytic experiments using copolymers of vinylamine and vinylisobutyl as polymeric ligands, it could be deduced that reaction rate depended linearly on the positive charge density on these ligands \(^{(7)}\).

In order to check the more general validity of the concepts used to account for the catalytic behavior of the CoPc(NaSO\(_{4}\)\(_{4}\))/PVAm catalyst (i.e. polymer charge density and basic groups as the most important parameters determining polymeric catalytic activity), the present investigation is focused on other types of basic polymers.

Branched poly(ethyleneimine) (PEI), poly(L-lysine) (PLL) and poly(ammoniumhydroxides), also known as iomcemes \(^{(8)}\) have been introduced as ligands for CoPc(NaSO\(_{4}\)\(_{4}\)). The results will be compared and discussed with those obtained from the CoPc(NaSO\(_{4}\)\(_{4}\))/PVAm catalyst system. Finally, the performance of the various polymeric catalysts in mouse experiments is tested.
Experimental

Poly(vinylamine HCl) (Polysciences Inc.), poly(ethyleneimine) (Fluka) and poly(l-lysine) (Polysciences Inc.) were used without further fractionation or purification. 2,4-, 2,6- and 2,10-ionicenes were prepared in mixtures of equimolar amounts of dimethylformamide and methanol, containing stoichiometric amounts of tetramethylethylenediamine and dibromo-butane, -hexane and -decane (3 mole dm$^{-3}$), respectively. The solutions were left undisturbed at room temperature for 2 weeks. The polymers were precipitated in acetone, filtered and purified by repeated dissolution in water and precipitation in acetone. The final products were dried at 50°C under vacuum. Carbon, nitrogen and hydrogen analysis indicated that the samples had the desired composition. As determination of the molecular weights of the ionicenes by vapor pressure or membrane osmometry fails (9), the intrinsic viscosity values at 25°C in 0.4 M KCl were used to roughly estimate the molecular weights. For 2,4-, 2,6- and 2,10-ionicenobromides, [η] was 0.08, 0.08 and 0.06 dL g$^{-1}$, respectively. The molecular weights were estimated, using the Mark-Houwink constants for 3,4-ionicenobromide (10) leading to \bar{M}_w 2,4$-$ = \bar{M}_w 2,6$-$ = 104 g mole$^{-1}$ and \bar{M}_w 2,10$-$ = 6 103 g mole$^{-1}$.

All polymers were eluted through an Amberlite 401 IRA anion-exchange column, in order to obtain the amine form of the polyamines or the hydroxide form of the ionicenobromides. After elution, the polymers were kept under nitrogen. Polymer concentrations, expressed in the monomolar concentration of ionizable or ionized groups, were determined by potentiometric titration in 2 M NaCl, with the exception of PEI, where such method failed (11). In this case the concentration was used as provided by the purchaser.
Potentiometric titrations were carried out under nitrogen with HCl (titrisol ampoules, Merck). A Radiometer Copenhagen titration equipment fitted with a GK 2401 B pH electrode was used. Titration times were not shorter than 20 min in order to obtain reproducible results.

The degree of ionization (i.e. protonation) of the polyamines was calculated as follows:

\[
\sigma = \frac{c_{H^+}^{\text{added}} - c_{H^+}^{\text{free}}}{c_{=N}^{\text{free}}}
\]

where \(c_{H^+}^{\text{added}}\) is the proton concentration as resulting from added HCl, \(c_{H^+}^{\text{free}}\) and \(c_{OH^-}^{\text{free}}\) are the concentrations of free protons and hydroxyl ions measured in the titration vessel, \(c_{=N}\) is the concentration of titratable groups.

For analysis of the H_2O content iodometric titration was used as described previously (4).

The polymeric catalysts were prepared by mixing aqueous solutions of CoPc(NaSO_3)_2 and polymer, resulting in a polymer attached organometallic complex. Catalytic measurements were carried out in a Warburg apparatus equipped with a mechanical stirrer and a digital oxygen flow meter. Initial rates were calculated from the oxygen consumption during the first minute of reaction. The pH was adjusted by adding HCl (0.01 M) or NaOH (0.5 M). A more detailed description was previously published (4).
Results and Discussion

Ionised state of the polymers

In Table 1 the chemical structures of the basic polymers used in the investigation have been summarised. During the catalytic experiments with the polymeric catalysts, the pH attained values between 7 and 8, due to the large excess of the weakly acidic thiol to basic polymer groups (c_SH/c_N \approx 200). In this pH region all polymers used bear positive charges, as may appear from the titration plots shown in Fig. 2. For the polyanines (PEI, PVAm and PLL) the degree of ionization

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Abbreviation</th>
<th>Chemical structure</th>
<th>Molecular weight</th>
<th>Charge density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(L-lysine)</td>
<td>PLL</td>
<td>(\begin{array}{c} \text{H} \ \text{C} \ \text{N} \ \text{C} \ \text{H} \end{array})</td>
<td>5.10^4</td>
<td>1.42</td>
</tr>
<tr>
<td>Poly(ethyleneimine)</td>
<td>PEI</td>
<td>(\begin{array}{c} \text{H} \ \text{C} \ \text{N} \ \text{C} \ \text{H} \end{array})</td>
<td>5.10^4</td>
<td>0.45</td>
</tr>
<tr>
<td>Poly(L-lysine)</td>
<td>PLL</td>
<td>(\begin{array}{c} \text{H} \ \text{C} \ \text{N} \ \text{C} \ \text{H} \end{array})</td>
<td>5.10^4</td>
<td>0.99</td>
</tr>
<tr>
<td>Poly(vinylamine)</td>
<td>PVAm</td>
<td>(\begin{array}{c} \text{H} \ \text{C} \ \text{N} \ \text{C} \ \text{H} \end{array})</td>
<td>5.10^4</td>
<td>2.00 - 11.45</td>
</tr>
<tr>
<td>Poly(amic acid)</td>
<td>x,y-Imide</td>
<td>(\begin{array}{c} \text{H} \ \text{C} \ \text{N} \ \text{C} \ \text{H} \end{array})</td>
<td>1.00</td>
<td>2.00 - 10.82</td>
</tr>
</tbody>
</table>

a: at pH = 7.8
is dependent on the pH, in contradistinction to the ionene hydroxide polymers, which bear permanent charges. Titration of the latter reveals a strong base - strong acid titration behavior, as expected.

Polymer catalytic effects

In order to investigate the catalytic effects of these polymers on the oxidation of 2-mercaptoethanol, the oxidation rates of polymer attached CoPc(\(\text{NaSO}_4\))\(_2\) were compared with the oxidation rates of CoPc\((\text{NaSO}_4)\)\(_2\) in the presence of the monomeric analogue (see Table 2). From the results of these experiments rather important conclusions can be drawn:

1. It is obvious that polymeric effects cause the observed rate enhancement. Moreover, the observation that all polycations presently
Table 2: Comparison of the catalytic activity of polymeric catalysts with their monomeric analogs at pH = 8, 298 K and $c_{M}=0.1$ mole dm$^{-3}$.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>10^3 Reaction Rate</th>
<th>Monomeric Analog</th>
<th>10^3 Reaction Rate in the Presence of Monomeric Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(vinylamine)</td>
<td>2.9</td>
<td>1,3-propanediamine</td>
<td>2.1</td>
</tr>
<tr>
<td>poly(L-lysine)</td>
<td>3.5</td>
<td>L-lysine</td>
<td>2.3</td>
</tr>
<tr>
<td>poly(ethylenimine)</td>
<td>1.9</td>
<td>dimethylamine</td>
<td>1.2</td>
</tr>
<tr>
<td>2,4-dimene</td>
<td>4.7</td>
<td>tetra-methylamino</td>
<td>1.7</td>
</tr>
</tbody>
</table>

a and b are the reaction constants in the presence and absence of polymer, respectively.

$k = \frac{v}{c_{M}[Co(cys)_{n}]}$, where v is the reaction rate and c is concentration.

investigated, exhibit large enhancements of the catalytic activity, provided that also basic functionalities are present, is indicative of a real polyelectrolyte catalysis, in which the long range interactions between substrate and polymer dominate. The precise polymer structure, viz. the location of charge (whether in or outside the main chain) or the kind of base group (amine or OH^-), seems to be of minor importance.

(2) Although axial coordination effects of the metal centre in $CoPc(SnS_{2})_{4}$ may occur in polyamines (5), these effects do not seem to play an important role in the mechanism of polymeric catalysis since the 2,4-dimene exhibits a very large rate enhancement, whereas it lacks any coordination ability. Moreover, the monomeric amines, possessing coordination abilities, nevertheless exhibit a comparatively low activity.

(3) Due to the absence of lone pair electrons in the ionenes, effects
of hydrogen bonding taking part in the substrate-polymer binding, can be ruled out here.

(4) All polymeric catalysts investigated exhibit a high apparent activity. Turnover numbers are in the range $1-4 \times 10^4$ s$^{-1}$

Effect of salt

The effect of salt (NaCl) on the catalytic activity was investigated for the 2,4 ionene, PVAm and PEI (Fig. 3). An increase in ionic strength results in a decrease in reaction rate for all cations investigated. The result may indicate the importance of electrostatic effects occurring in the polymeric catalysis. The larger effect of salt on the activity of polycations of higher charge density corroborates this assumption. However, an increase in ionic strength might also cause a contraction of the polymer coils, eventually lowering the accessibility of the catalytic sites for the reactants. Although the effect of diffusional limitations did not reflect significantly in the overall activation energies (4) for the CoPc(SO$_3$)$_4$/PVAm catalyst, this effect cannot be entirely excluded.

![Fig. 3: Effect of ionic strength (NaCl) on the polymeric catalytic activity.](image)
Effect of polymer charge

In a recent paper \(^7\), a linear increase in reaction rate with increasing polymer charge density was found when copolymers of vinylamine and vinylalcohol were used as polymeric ligands for CoPc(HSO\(_3\))\(_4\). In order to check whether this behavior is a more general characteristic of other polycationic thiol oxidation catalysts as well, the effect of the charge density of the 2,4-, 2,6-, and 2,10-ionenes on the reaction rate was investigated. For the sake of comparison with those previously obtained for the vinylamine-vinylalcohol copolymers \(^7\), the dimensionless linear charge density parameter (\(\lambda\)) of the polycations was calculated, according to the rigid rod cell model for polyelectrolytes proposed by Katchalsky \(^12\). The values of \(\lambda\) have been calculated from eq. 3 and some are listed in Table 1.

\[
\lambda = \frac{\sigma e^2}{4\pi \varepsilon_0 \varepsilon b kT}
\]

where \(e\) = proton charge, \(\sigma\) = degree of ionization of the polymer, \(\sigma = 1\) for ionenes, \(\sigma = 0.35\) for PAM at pH = 7.8, see Fig. 2; \(\varepsilon\) = dielectric constant; \(b\) = average linear distance between ionizable (ionized) groups; \(kT\) = the Boltzmann term; all symbols should be expressed in SI units; in cgs units the factor 4\(\pi\) should be omitted.

In Fig. 4 the results are shown, revealing that also for the ionene polymers an almost linear relationship is observed between reaction rate and polymer charge density. However, the shift between the data obtained from the ionenes and those from the amine-alcohol copolymers in Fig. 4 indicates that at constant pH reaction rates are not solely determined by charge density. The observed shift may be explained by the difference in polarity of the chain segments between the charges on the main chain. The copolymers possess very
hydrophilic chain segments (amine and alcohol residues), whereas the
ionenes have hydrophobic alkyl segments. This may account for the
observed minimal charge density of the ionenes required to exhibit
a catalytic effect.

In Fig. 4 also the calculated polymer "bound" counterion (RS⁻)
density is plotted versus the charge density on the polymer (λ), using
polyelectrolyte theories for salt free solutions (12). It reveals
that the rate enhancement by polycations equipped with basic function-
alities can be qualitatively explained from the enhanced local
concentration of thiolamions \(^*\) in the vicinity of the polymer attached oxidation sites (CoPc(SO\(_3\))\(_{4}^{+}\)) resulting in an enhanced collision frequency. However, desolvation effects of reactants and activated complex, generally observed in all kinds of systems in which a number of charges is confined to a small space \(^*\), should also be considered in order to account for the observations presented \((13,14)\)\(^*\).

This proposed desolvation of the activated complex should be reflected by the values of the activation entropy. In Table 3 rate constants and activation parameters have been listed for some differently charged copolymers and for ions. The increase of \(\Delta S_{298}^{f}\) observed for both polymer types when polymer charge density increases is consistent with both concepts accounting for the observed rate enhancement: enhanced local substrate concentration and increased desolvation of the activated complex by the high electrostatic potential of the macro-ions. However, for the amine-alcohol copolymers the increase in activation entropy is very moderate with respect to the ions, where \(\Delta S_{298}^{f}\) is increased at the expense of a low activation enthalpy. Within the concept of dehydration of the activated complex, these differences in entropy increment may be explained from the increased hydrophobic effects occurring in the ionene polymers when charge density decreases and the alkyl segments get longer. In this line of thought it might be expected that the differences in dehydration of the activated complex showing up in the \(\Delta S_{298}^{f}\) values, would be more pronounced for the ions than for the copolymers, the latter

\(^*\) In accord to these explanations we recently observed a cationic micellar catalytic effect for the oxidation of dodecanethiol (15).

\(^*\) For various copolymers of vinylamine and vinylalcohol it was verified that CoPc(SO\(_3\))\(_{4}^{4-}\) was bound to these differently charged copolymers and hence a detachment of CoPc(NaSO\(_3\))\(_{4}^{+}\) could not account for the observations, shown in Fig. 4.
Table 3: Activation parameters for the oxidation of enole in the presence of
copolymers at 298 K and pH = 7.2.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>(k_{e})</th>
<th>(k_{s})</th>
<th>(\Delta H^{\circ})</th>
<th>(\Delta S^{\circ})</th>
<th>(\Delta G^{\circ})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{2,1,})</td>
<td>0.82</td>
<td>30</td>
<td>1.1 & 3</td>
<td>-160 & 8</td>
<td></td>
</tr>
<tr>
<td>(\text{2,4,})</td>
<td>1.38</td>
<td>38</td>
<td>19</td>
<td>-105</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) Data obtained from ref. 7.

\(^{b}\) \(k_{e} \) mole fraction of ethylenimine units in the copolymer

\(^{c}\) \(k_{s} \) propidamolamine

\(^{d}\) \(\Delta H^{\circ}, \Delta S^{\circ} \) values of \(k_{e} \) and \(k_{s} \) obtained from extrapolation

\(\Delta G^{\circ} = -RT \ln Q_{e} \) where \(Q_{e} = 0.15 \text{ mole dm}^{-3} \)

being hydrophilic even at very low polymer charge density. In view of
these considerations, the hydrophobic, activation entropy lowering
effects of the ions; should vanish when the alkyl chain segments be-
come very short and the charge density becomes very high as in the
2,4-ionene. In fact, the similar activation entropy values found for
the 2,4-ionene (\(\Delta S^{\circ} = -58 \text{ J mole}^{-1} \text{ K}^{-1} \)) and the vinylamine-vinylic alcohol
co-polymer (\(k_{e} = 0.81 \)) (\(\Delta S^{\circ} = -53 \text{ J mole}^{-1} \text{ K}^{-1} \)) corroborate this
hypothesis.
Effect of pH

A change in the pH of the reaction medium will seriously affect important parameters establishing catalytic activity, e.g., the amount of basic groups in the polymer domain and thus the amount of thiocyanates, the polymer charge (with the exception of the ionenes) and the ionic strength in the reaction medium. Also the polymer coil conformation will be affected.

In Fig. 5 the effect of pH on the catalytic activity of the various polymeric ligands is shown. More or less bell-shaped curves are found as often observed for enzymes (16), where both basic and acidic sites take part in the reaction. The importance of basic sites (and thus of \(\text{RS}^- \)) in the catalyzed oxidation of thiols is reflected by the increase of rate for pH > 4 in Fig. 5. All polymers exhibit an optimum and at higher pH the reaction rates are lower. For the polyamines this rate retarding effect is more drastic than for the 2,4-ionene. This can be explained by realizing that the polyamines lose their charge at higher pH (Fig. 2), whereas the ionenes keep their charge, thus favoring a higher catalytic activity (as can be deduced from Fig. 4).

![Graph showing the effect of pH on catalytic activity](image)

Fig. 5: Dependence of the catalytic activity of various polymeric ligands on pH: $\text{catalyst} \times 10^{-2} \text{ M}$, $t_{90} = 6.0$. 2,4-ionene, $c_0 = 10^{-3} \text{ M}$

- poly(2,4-ionene), $c_0 = 10^{-3} \text{ M}$
- poly(2,4-ionene), $c_0 = 10^{-3} \text{ M}$
- poly(2,4-ionene), $c_0 = 10^{-3} \text{ M}$
- poly(2,4-ionene), $c_0 = 10^{-3} \text{ M}$
The increase in hydroxyl ion concentration at higher pH, will cause a rate retardation for all polycations, as could be expected from Fig. 3, although the bulk HS− concentration increases, due to dissociation of the weakly acid RSH. The pH optima, observed for the polyanines in Fig. 5, are in the order PVI < PVAm < PLL. This can be explained by the basicity of the amine groups, which also increases in the order PVI < PVAm < PLL, as shown in Fig. 2. In other words, at pH = 6, which is the pH optimum for PVI, the polymer environment of PLL would be too acidic to exhibit optimal activity and therefore the pH optimum for the latter is shifted to higher pH.

Role of catalysts

Other workers in our institute found earlier that the CoPc(Na2SO3)₄/PVAm catalyst stability was poor (17). This deactivation was related to the formation of H₂O₂ during reaction. Apart from the well known destruction of CoPc(Na2SO3)₄ by H₂O₂ they showed that during reaction small amounts of sulfur containing oxo-acids were formed, which caused protonation of the amine groups of PVAm thus causing a drift in the pH from the optimal value. In our catalyst reuse tests the latter effect was ruled out by adjusting the pH (pH = 8) before each run, thus titrating the small amounts of acids formed.

In Fig. 6 the catalysts performance during successive runs is shown, revealing that the polyanines still exhibit poor stability under the present conditions, whereas the 2,4-ionene shows a much better performance. Nevertheless, the oxygen mass balance (Table 4) shows that in both the PVAm and the ionene system H₂O₂ and sulfur containing oxo-acids are formed. This makes it plausible that during oxidation the polymeric amine groups are chemically attacked, whereas the quaternary ammonium groups of the ionenes are not. Indeed there is evidence* that the main

* Mixtures of PVAm and RSSR yield a thiol odor soon after mixing, moreover they discolor an iodine solution after acidifying, whereas a blank of RSSR in water does not.
Fig. 1: Stability of polymeric thiol oxidation catalysts in aqueous solutions. \([\text{H}] = 10^{-2} \text{ M}, [\text{Cu}(\text{HCO}_3)] = 3 \times 10^{-5} \text{ M}, \text{pH} = 8 \). After cessation of oxygen consumption, 1 from table (0.14 M) was added and the pH was adjusted to 8.

- 2,4-dioxythiophenol, = poly(1-hydroxy-1,2-dioxythiophene), = poly(1-thiophene), = poly(1-thiophene).
- From portion of Cu(II) ions is added 1.9 \times 10^{-7} \text{ M}.

<table>
<thead>
<tr>
<th>Table 1: Oxygen mass balance in the polymer-catalyzed oxidation of 2-mercaptoethanol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>process</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NBR conversion to (\text{SBR})</td>
</tr>
<tr>
<td>(\text{H}_2\text{S}) production</td>
</tr>
<tr>
<td>sulfur-containing compound</td>
</tr>
<tr>
<td>total calc.</td>
</tr>
<tr>
<td>total mass</td>
</tr>
</tbody>
</table>

1) \(\text{pH} = 7.4 \), data obtained from ref. 4.

2) \(\text{pH} = 7.4 \), data after complete conversion of NBR.

(a) Obtained from the stoichiometry of the reaction: \(4\text{NBR} \cdot \text{H}_2 \rightarrow 4\text{SBR} + 4\text{H}_2\text{O} \), the weight of NBR was used.

(b) Obtained from the stoichiometry of the reaction: \(\text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{H}_2\text{O}_2 \), the amount of \(\text{H}_2\text{O}_2 \) was determined by iodometric titration.

(c) Maximum value obtained from the stoichiometry of the reaction: \(2\text{SBR} \cdot \text{O}_2 + \text{H}_2\text{O} \rightarrow 2\text{CO}_2 \cdot \text{H}_2\text{O} \), the amount of \(\text{H}_2\text{O} \) used during reaction was determined by titration with NaOH till constant pH.

2) Average of four experiments, errors within 95% confidence limit.
deactivation of the polyamine catalysts is caused by nucleophilic cleavage of the reaction product, RSR^-, by primary or secondary amines yielding sulfanamides and thiol (18, 19), thus destroying the charge and base functionalities of the polyamines. The ions, where nucleophilic groups are absent, will be inert to this poisoning. Therefore, in this latter case the main cause of deactivation will be the destruction of CoPc(NaSO$_4$)$_4$ by H_2O_2. This is confirmed by the observation that addition of fresh CoPc(NaSO$_4$)$_4$ solution to the FVAm catalyst after 4 runs does not increase catalytic activity significantly (Fig. 6), whereas addition of the same to the 2,4-ionic catalyst, results in a considerable recovery of catalytic activity, even after 10 runs. The significance of this observation is even greater when considering the accumulation of dialcohol (RRSR) in the reaction mixture (up to 25 v/v %) which in itself should be expected to lower the rate considerably (20).

Conclusions

- Cationic, basic polymers exhibit a large, rate enhancing effect on the CoPc(NaSO$_4$)$_4$ catalyzed oxidation of 2-mercaptoethanol, as compared with their monomeric analogs.
- Electrostatic effects play a dominant role in the catalysis; reaction rate varies linearly with the linear charge density on the polycation, and salt has a rate retarding effect.
- Hydrophilic side groups of the polymers have a promoting effect. An increased local concentration of thiocyanates in the vicinity of the oxidation sites and dehydration effects of the activated complex account for the observed rate constants and activation parameters.
- Although axial coordination of the CoPc(NaSO$_4$)$_4$ by the polymeric ligand moiety may occur (e.g. in FVAm) it becomes improbable that
this accounts for the polymeric catalytic effect since the polycation 2,4-ions, which has no coordination abilities toward CoFe(NaSO₃)₄, also exhibits a very pronounced enhancement of reaction rate.

- CoFe(NaSO₃)₄ attached to polystyrenes, equipped with quaternary ammonium groups exhibits a very improved catalyst stability in reuse experiments as compared with polyamines.

References

(2) W.M. Brouwer, P. Piet and A.L. German, Makromol. Chem. 185 (1984), 263
(3) W.M. Brouwer, P. Piet and A.L. German, Polym. Bull. 8 (1982), 245
(6) W.M. Brouwer, P. Piet and A.L. German, Polymer Commun. 25 (1983), 21
(7) W.M. Brouwer, P. Piet and A.L. German, J. Mol. Catal., accepted for publication
(10) H. Neguchi and A. Rambau, Makromoleküle, 5 (1972), 261
(15) W.M. Brouwer, P. Piet and A.L. German, J. Mol. Catal., accepted for publication
(18) H. Al-Rawil, K.A. Stacey, R.H. Weatherhead and A. Williams, J.C.S. Far ciné II, (1978), 663
(19) R.H. Weatherhead, K.A. Stacey and A. Williams, J.C.S. Far ciné II (1978), 800
Chapter IX

AUTOXIDATION OF THIOLS WITH COBALT(II) PHYTHALOCYANINE TETRASODIUM SULFONATE ATTACHED TO POLY(VINYLAMINE).

6. Immobilized catalysts by cross-linking of poly(vinylamine).

W.M. Brouwer, P.A.M. Tesa, T.J.W. de Weerd,
P. Piet and A.L. Geman
Laboratory of Polymer Chemistry
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands

Summary

Poly(vinylamine), being both carrier and promoter of the thiol oxidation catalyst cobalt(II)phthalocyanine-tetrasodium sulfonate (CoPc[NaSO_4]_4), was cross-linked with α,ω-dihalo-p-xylene, thus yielding porous hydrophilic networks.

The effects of experimental parameters such as stirring speed, particle size, degree of cross-linking, distribution of catalytic sites (CoPc[NaSO_4]_4) in the catalyst particles, pH, temperature, and thiol concentration were investigated.

Reaction rates observed for the immobilized catalyst systems, appeared to be 4-30 times lower as compared with the water soluble
polymeric catalyst system, but still higher than the polymer free
CoPc(NoSO₂⁻)₄ catalyst.

At a stirring speed around 3.10³ rpm not mass transfer from the
bulk to the catalyst particle but intra-particle diffusion limits
reaction rate. Accordingly, an anchor-linked polymeric catalyst anchored
to silica, with catalyst sites situated close to the particle surface,
exhibited comparatively high activity, i.e. only four times lower
than the soluble polymeric catalyst.

In addition, the heterogeneous catalyst systems showed resemblance
in kinetic behavior with the soluble polymeric thiol oxidation catalyst.

Introduction

Immobilization of active soluble macromolecular catalysts is an
important topic in the field of polymeric catalysis, as it offers the
possibility of easy separation of the catalyst from the reaction
products. Many reviews on heterogeneous polymer supported catalysis
have been published (1-4).

In general the apparent catalytic activity diminished tremendously
after immobilization. In many cases this decrease in rate was ascribed
to the occurrence of a rate limitation by matrix diffusion or to
specific effects of the carrier itself, e.g. steric hindrance,
microenvironmental effects etc.

In this paper the effect of immobilization of the very active
polymeric thiol oxidation catalyst cobalt(II)phthalocyanine-tetrasodium
sulfonate (CoPc(NoSO₂⁻)₄, Fig. 1), bound to poly(vinylamine) (PVAm),
has been examined for its catalytic activity. Immobilization was achieved
by cross-linking the functional polymeric promoter, PVAm, thus serving
as both insoluble support and catalyst promoter. When immobilizing
in this manner, specific rate retarding effects originating from a
"foreign" carrier surface were thought to be reduced or absent.
Fig. 11. Chemical structure of CaFe(III)(H₂)₄.

The effects of several experimental parameters on reaction rate have been investigated and from these results conditions have been formulated to obtain optimal activity of immobilized thiol oxidation catalysts.

Experimental

Cross-linking of poly(vinylamine)

All reagents were obtained commercially and used as supplied. Cross-link reactions of poly(vinylamine) (PVAmHCl, Polysciences; \(M_w = 5 \times 10^6 \text{ g mole}^{-1} \)) and \(\alpha, \omega \)-dichloro-p-xylene (Fluka) were carried out in a 1:1 v/v mixture of methanol and water at 60°C during 5 h (see eq. 1). Polymer concentration (repeating units) was 1 mole kg⁻¹, reaction volume 8 ml.
The crude resin so obtained was washed with 100 ml NaOH aq (5.10^{-3} M) and a large excess of distilled water, in order to remove chloride and caustic, respectively. Hereafter, the highly swollen resin was washed with acetone, pulverized and dried at 40°C at 10 Pa. The degree of cross-linking was in the range 1-20%, as determined by potentiometric titration.

Swelling behavior

The degree of swelling of the resin was determined after equilibration of the resin particles with distilled water. The samples were isolated by filtration under suction, until separation of water had ceased. Immediately afterwards, the weight of the highly swollen samples was determined.

Nitration experiments

The basicity of the amine groups was determined by potentiometric titration of the dried resins with HCl (0.01 M) in 2 M NaCl. A PHM 62 pH meter (Radiometer Copenhagen) fitted with a GE 2401 B electrode was used. In order to prevent absorption of atmospheric CO₂, the titration vessel was carefully kept under a stream of nitrogen. The titrant was added in small portions (1 ml) and the pH was measured 25 min after each addition, when constant pH levels were attained.
Degree of cross-linking

The degree of cross-linking (DC) is defined as the molar ratio of cross-linker (c) and polymeric repeating units (p) *:

\[DC = \frac{c}{p} \times 100 \ (\%) \]

For the experimental determination of the degree of cross-linking, potentiometric titrations with 0.1 M HCl on freshly prepared, crude resins were performed directly in the reaction vessel.

Anchorage of poly(vinylamines) to silica

Macroporous silica (Merckogel 1000) was used; particle size: 63-125 μm; specific surface by BET absorption: 17.3 m²/g; average pore radius: 53nm.

The functional silane, γ-glycidoxy-n-propyl trimethoxy-silane (Union Carbide Silane A-187) was kindly supplied by Dr. A. Graal, Contivena B.V.

At first the silica was treated with the functional silane in water at room temperature for 6 h (silane/silica = 1:20 w/w). Unreacted silane was removed by washing with water and acetone successively. One gram of pretreated silica was added to 4.5 mmol of aqueous PVAm. After standing for 24 h at room temperature, the particles were washed thoroughly with water and acetone, and dried at reduced pressure (10 Pa). Elemental analysis of the PVAm coated silica: 0.21% N; 0.63% C, which means that the ratio of polymer repeating units: silane = 4:1.

The CoPc(NaSO₄)₃/4 solution was added to the PVAm coated silica particles in the reaction vessel just before the kinetic measurements.

* If all amine groups of I are cross-linked by II, the percentage of cross-linking is 50.
Catalyst preparation

Active thiol oxidation catalysts could be obtained by adding a very dilute blue solution of CoPc(NaSO₃)₄ to the polymeric functional carriers, causing the latter to take on a deep blue color. The bonding of CoPc(SO₃)₂⁺ to the polymer has been studied earlier and appeared to be caused by Coulombic and coordinative interactions (5).

In the case of cross-linked PVAm particles, two types of catalysts were used. Type A was obtained by adding the CoPc(NaSO₃)₄ solution after cross-linking of PVAm; in the preparation of type B, CoPc(NaSO₃)₄ was added to PVAm before the cross-linking took place. It is expected that the former procedure (Type A) leads to the occurrence of CoPc(NaSO₃)₄ sites on the particle surface, whereas the latter procedure (Type B) yields a homogeneous distribution of CoPc(NaSO₃)₄ sites within the catalyst particles.

CoPc(NaSO₃)₄ appeared to be tightly bound and could not be rinsed out. The ratio Co/N in the resins was in the range 0.001–0.002.

Catalytic activity measurements

Catalytic measurements were carried out in a double-walled thermostated Warburg apparatus, equipped with an all-glass mechanical stirrer (maximum speed 4000 rpm). Initial reaction rates were determined by measuring the oxygen uptake during the first minute of reaction. Rates were expressed either in ml O₂/mol Co, min or in mole RSH/dm³ s, in the latter case stoichiometry was assumed according to the reaction:

\[4 \text{RSH} + \frac{1}{2} \text{O}_2 \rightarrow 2 \text{RSSR} + 2 \text{H}_2\text{O} \] \[\text{[3]} \]

Unless otherwise stated, the initial thiol concentration was 0.19 M and the temperature 25°C. Oxygen pressure was 0.1 MPa. The pH was adjusted with NaOH (1 M) or HCl (0.1 M). Measurements were carried out as described elsewhere in detail (6).
Results and Discussion

Catalyst preparation

In order to get insight into the effectiveness of the cross-linking reaction, potentiometric titration experiments with HCl were performed. Under a few assumptions the (experimental) degree of cross-linking (DC) could be obtained from these data. From the molar amount of HCl (c), required to reach the equivalence point and the molar amount of polymer repeating units, (p), the DC was calculated with eq. 4:

\[DC = \frac{P - C}{4p} \times 100 \]

Here the following assumptions were made:
(1) only primary amines can be titrated, as the basicity of the secondary amine groups, formed in the cross-link reaction (eq. 1) will be strongly reduced due to the electron withdrawing character of the aromatic moiety of the cross-linker \((7,8)\), and (2) no further reaction of secondary amine groups to tertiary or quaternary amines is taking place. Thus, addition of \(c \) moles of cross-linker will cause a decrease of \(4c \) of titratable primary amine groups according to eq. 1. In Table 1 the titration results and the theoretical and observed DC, calculated according to eq. 2 and 4, respectively, are shown. The DC values obtained from the titration experiments are in very good agreement with the theoretical values, which indicates that the cross-link reaction proceeds quantitatively within 5 h and justifies the assumptions made in the calculation of the experimental DC according to eq. 4.
Table 1: Comparison of theoretical and observed degree of cross-linking:

<table>
<thead>
<tr>
<th>(\frac{n}{N}) mass</th>
<th>(\frac{n}{N}) mole</th>
<th>(\frac{n}{N}) mole</th>
<th>Theoretical degree of cross-linking</th>
<th>Observed degree of cross-linking</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.236</td>
<td>1.97</td>
<td>3.80</td>
<td>11.2</td>
<td>11.4 ± 0.4</td>
</tr>
<tr>
<td>0.25</td>
<td>1.61</td>
<td>2.35</td>
<td>9.0</td>
<td>9.0 ± 0.4</td>
</tr>
<tr>
<td>0.40</td>
<td>2.32</td>
<td>3.54</td>
<td>10.0</td>
<td>10.0 ± 0.4</td>
</tr>
</tbody>
</table>

(1) According to equation 1.
(2) Assuming to equation 4.
(3) Error interval based on the uncertainty in the determination of the equilibrium prior.

Basicity of amine groups in cross-linked resins

In Fig. 2 the titration diagrams (pH vs. the degree of protonation of the titratable groups) are shown for a monomeric amine: 1,3 propylenediamine (1,3 PDA), poly(vinylamine) (PVAm) and cross-linked PVAm (DC: 2.5, 10 and 20%). From the figure it appears that the basicity of the amine groups is reduced in PVAm and even more in cross-linked PVAm, with respect to the monomeric analog 1,3 PDA. This effect may be explained by taking into account neighboring interactions between adjacent amine groups, causing a lower, pH dependent, basicity of the amine groups (9). The electron withdrawing properties of the cross-linker will contribute to this lower basicity level as well. A similar decrease of basicity as the DC of the networks increases was observed by Bolto et al. for poly(diethylamine) networks (8).
Fig. 2: Titration plots (pH versus degree of protonation of titratable base groups) of polyamines in 2 M HCl.
- , 1,3-propanediamine; O, PAM; cross-linked PAM; ▲, DC = 1.58;
0 DC = 102; ●, DC = 202

Fig. 3: pH dependence of catalytic activity.
- CoFe(III)₃(SH)₄⁺(cross-linked PAM (type B, DC = 48));
- CoFe(III)₃(SH)₄⁺/3-propylamine/CAM; ● CoFe(III)₃(SH)₄⁺/GA
PH dependence of reaction rate

In Fig. 3(b) the pH dependence of the oxidation rate of RSH with catalyst type B (homogeneously distributed CoPc(SO\(_4\))\(_3\)\(_4\)) in the cross-linked PVAm matrix is shown. An optimal reaction rate is observed at pH = 7.5. In the polymer free systems CoPc(SO\(_4\))\(_3\)\(_4\)/1,3 PDA/\(\text{OH}^-\) (● in Fig. 3) an optimal catalytic activity is found at pH = 10. The CoPc(SO\(_4\))\(_3\)\(_4\)/1,3 PDA/\(\text{OH}^-\) system is about 3 times as active as the CoPc(SO\(_4\))\(_3\)\(_4\)/\(\text{OH}^-\) system which is in agreement with previous findings (10).

A similar shift in pH optimum as compared with the polymer free systems was earlier observed for the CoPc(SO\(_4\))\(_3\)\(_4\)/PVAm (DC=0) system with an optimal activity at pH = 8 (11). This phenomenon was discussed in terms of changes in chain charge and local substrate concentrations, caused by the pH dependent basicity of the amine groups.

Accessibility of CoPc(SO\(_4\))\(_3\)\(_4\) sites and degree of cross-linking of the particles

As described in the Experimental section, two types of cross-linked particles were investigated. Type A was prepared by adding CoPc(SO\(_4\))\(_3\)\(_4\) after cross-linking of PVAm, in contrast with type B, where CoPc(SO\(_4\))\(_3\)\(_4\) was added before cross-linking of PVAm. The apparent catalytic activity of the sites in both catalyst types, and the effect of the degree of cross-linking on the water swellability and on the activity of catalysts A and B was investigated. The results are shown in Fig. 4. System A appears to be at least three times more active than system B, measured at the same DC. From this result it may be inferred that in system A most of the large, square planar, rigid CoPc(SO\(_4\))\(_3\)\(_4\) moieties are attached to the polymer matrix close to the particle surface while in system B the CoPc(SO\(_4\))\(_3\)\(_4\) will be homogeneously distributed in the cross-linked particle. This is shown schematically in Fig. 5. The rate
Fig. A: Effect of the degree of cross-linking of PMAM on its solubility (○) and on the catalytic activity, v, of catalyst type A (△) and B (□).

Fig. B: Schematic representation of a cross-section of cross-linked PMAM. A: CoMe(CN)$_2$Cl$_2$ added after cross-linking; B: CoMe(CN)$_2$Cl$_2$ added before cross-linking.
difference between A and B may then be explained by the occurrence of a rate limiting intraparticle diffusion, which should be more pronounced in system B than in system A.

As expected, the degree of swelling increases as the degree of cross-linking decreases (see Fig. 4). The water swellibility is very high due to the presence of polar, charged groups in the polymeric matrix.

The catalytic activity follows curves of similar shape (\(m \) for system A and \(n \) for system B in Fig. 4). This behavior is also indicative of a rate limiting matrix diffusion process, although the lower basicity (see Fig. 2) and thus the network charge at higher \(\Delta C \), may also contribute to the rate retardation \((12) \).

Stirring speed and particle size

Variation around the high stirring rate applied (3.10^3 rpm) caused no significant change in reaction rate for both systems A and B. This indicates that reaction rate is not limited by mass transfer to or from the catalyst particles. The effect of the particle size of catalysts A and B was also measured. Two particle sizes, about 60 and 10 \(\mu \)m (obtained from scanning electron micrographs), were investigated. When using the small particles, no significant change could be observed in system A, but for system B the rate increased over 35%, indicating that the rate limiting effect of matrix diffusion in system B will be larger than in system A, which is consistent with the schematic representation in Fig. 5.

The observed effects of experimental parameters on the reaction rate have been summarized in Table 2a. The effects expected when mass transfer, intrinsic reactivity, or both intrinsic reactivity and matrix diffusion limit rate, are shown in Table 2b \((13-15) \). It becomes evident that all experimental observations indicate that reaction rate is limited by both matrix diffusion and intrinsic reactivity.
Table 2: Effect of experimental parameters on reaction rate in cross-linked polyacrylamide.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stirring speed</th>
<th>Particle size</th>
<th>Degree of cross-linking</th>
<th>Distribution of catalytic sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
</tr>
</tbody>
</table>

For catalyp type A this dependency was very small.

Table 3: Effect of experimental parameters on rate-limited processes.

<table>
<thead>
<tr>
<th>Process</th>
<th>Stirring speed</th>
<th>Particle size</th>
<th>Degree of cross-linking</th>
<th>Distribution of catalytic sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass transfer</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
</tr>
<tr>
<td>Intrinsic reactivity</td>
<td>Independent</td>
<td>Independent</td>
<td>Independently</td>
<td>Independent</td>
</tr>
<tr>
<td>Matrix diffusion and intrinsic reactivity</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
</tr>
</tbody>
</table>

Activation energy

The importance of intra-particle diffusion in these cross-linked systems may also appear from an analysis of the apparent activation energies. If matrix diffusion is rate limiting, the observed activation energy will be lower than the true activation energy (13-15). The latter will be observed when the intrinsic reaction rate is low as compared with the matrix diffusion rate. Table 3 shows the observed activation energies at pH = 8 in the soluble polymeric catalyst system and in the cross-linked systems A and B (DC = 4.9%). The Table shows that rate limitation by matrix diffusion is more pronounced in system B than in system A, suggesting a larger diffusion path in the case of catalyst B. These findings support our explanation of the other phenomena observed.
Table 3: Apparent activation energy and intra-particle diffusion index d for several catalyst systems.\(^a\)

<table>
<thead>
<tr>
<th>Catalyst support for $\text{FeP} (\text{MoS}_2)_n$</th>
<th>d</th>
<th>ν_x L(^{-1}) mole(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur/carbon</td>
<td>0</td>
<td>10 ± 4</td>
</tr>
<tr>
<td>Catalyst type A</td>
<td>4.9</td>
<td>33 ± 6</td>
</tr>
<tr>
<td>Catalyst type B</td>
<td>4.9</td>
<td>44 ± 2</td>
</tr>
</tbody>
</table>

\(^a\) $d_x = 9$

Fig. 4a: Effect of $\text{2-mercaptobenzothiazole}$ concentration (BRM) on reaction rate.

Fig. 4b: Lineweaver-Burk plot. Data from Fig. 4a.
Thiol concentration

Initial reaction rates were determined for different initial thiol concentrations ranging from 0.04 to 0.7 M. Fig. 6a shows the results. The Michaelis-Menten kinetic concept appears to be applicable to these data, implying a rate law of the type

\[
v = \frac{k_2 \cdot E_0}{K_m + S}
\]

[7]

where \(E_0 \) = the total catalyst concentration (CoPc(NaSO_3)_4), \(S \) = the initial substrate concentration, \(k_2 \) = the rate determining reaction constant and \(K_m \) is the Michaelis constant. From the Lineweaver-Burk plot in Fig. 6b, the apparent values of \(k_2 \) and \(K_m \) have been derived and are listed in Table 4, together with the parameters for the soluble polymeric catalyst system, found previously. The significantly

<table>
<thead>
<tr>
<th>Catalyst type</th>
<th>(K_m) mol deq</th>
<th>(10^{-3} k_2) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>soluble PAM</td>
<td>0.03 ± 0.02</td>
<td>25 ± 4</td>
</tr>
<tr>
<td>soluble PVA</td>
<td>0.04 ± 0.02</td>
<td>1.3 ± 0.1</td>
</tr>
<tr>
<td>soluble PVD</td>
<td>0.02 ± 0.02</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>soluble PDA</td>
<td>0.01 ± 0.01</td>
<td>0.09 ± 0.1</td>
</tr>
<tr>
<td>soluble PII</td>
<td>0.01 ± 0.01</td>
<td>0.09 ± 0.1</td>
</tr>
<tr>
<td>soluble PDII</td>
<td>0.01 ± 0.01</td>
<td>0.09 ± 0.1</td>
</tr>
</tbody>
</table>
larger value of k_2 as well as the lower value of k_1 in the immobilized system B may be due to diffusional resistance, causing a lower local substrate concentration in the vicinity of the catalytic sites as compared with the soluble polymeric catalyst system.

Silica anchored polymeric catalysts

From all these observations it may be deduced that the catalytic sites $(\text{CoPc(NaSO}_3)_4)_4$, situated at or nearby the outer surface of the cross-linked polymeric particle, are the most effective ones, since then reaction rate is hardly limited by matrix diffusion. This ineffectiveness of the catalyst interior prompted us to substitute this inner part by an inert substance e.g. silica.

A silica anchored CoPc(NaSO$_3$)$_4$/PVAm catalyst was synthesized and characterized (see Experimental) and its activity (see Table 5) was

<table>
<thead>
<tr>
<th>Catalyst support for CoPc(NaSO$_3$)$_4$</th>
<th>pH optimum</th>
<th>$[\text{Fe}^2]$ k (relative rate a) ml/mg, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$^+$ catalyst type a (DC = 42)</td>
<td>4.7</td>
<td>0.1</td>
</tr>
<tr>
<td>catalyst type b (DC = 43)</td>
<td>3.5</td>
<td>0.3</td>
</tr>
<tr>
<td>catalyst type c (DC = 1.52)</td>
<td>6</td>
<td>1.6</td>
</tr>
<tr>
<td>silica anchored PVAm</td>
<td>6</td>
<td>2.7</td>
</tr>
<tr>
<td>soluble PVAm</td>
<td>6</td>
<td>10.6</td>
</tr>
</tbody>
</table>

$a)$ At pH = 8.1; $f_{\text{PEG}} = 0.19$ mole dm$^{-3}$

$i)$ not determined
found to be even higher than observed for system A, but nevertheless less active than the soluble non-cross-linked polymeric system. Thus, an improved accessibility of the catalytic sites lead to an enhanced reaction rate as compared to system A, but decreased it as compared with the polymeric catalyst system, due to multi-anchoring of the PVAm onto the silanized surface, thus lowering conformational freedom and accessibility or due to a specific effect of the silica surface (17). It seems therefore that a polymeric catalyst anchored by a single link on a small rigid inert carrier particle as shown recently by Verlaan et al. (18), will offer an approach to an even more active, immobilized polymeric catalyst.

Conclusions

- α,α’-dichloro-p-xylene appeared to be an efficient cross-linker of PVAm.
 - The reaction proceeds almost quantitatively under the applied conditions.
 - The main effect introduced by cross-linking the very active water soluble polymeric catalyst, CoPc(NaSO₃)₄/PVAm, is the occurrence of a rate limitation by matrix diffusion. At the applied stirring speed (3.10³ rpm) rate limitation by mass transfer in bulk has not been observed. Therefore, more active immobilized catalysts of this type will only be obtained, when the accessibility to the very active catalytic sites is improved, as is the case for a silica anchored macromolecular catalyst.
 - As expected, kinetic resemblance has been found between the soluble polymeric catalyst system, CoPc(NaSO₃)₄/PVAm, and the insoluble cross-linked polymeric catalyst: e.g. Michaelis-Menten kinetics in thiol and a shift of the optimal pH value from that of the polymer free systems.
References

(2) G. Manecke and W. Storch, Angew. Chem., 96 (1978), 691
(12) W.M. Brouwer, P. Piet and A.L. German, J. Mol. Catal., accepted for publication
(16) L. Michaelis and H.L. Menten, Biochem. Z., 49 (1913), 333
SUMMARY

This thesis describes an investigation of the rate enhancing effect of basic polymers on the oxidation of thiols to disulfides, with cobalt(II)phthalocyanine-tetrasodium sulfonate (Co(PhC)NaSO₄)₄ as a catalyst. A 20-50 fold acceleration of rate was observed when using Co(PhC)NaSO₄ bound to basic polymers instead of bound to monomeric analogs.

The conversion of 2-mercaptoethanol is governed by three important parameters, each largely affecting polymeric catalyst activity: basicity, polymer charge density and ionic strength.

Basic groups are needed to dissociate the weakly acidic thiol thus supplying thiol-anions which are generally considered as the reactive species (Ch. I). The importance of basic groups is also reflected by the molecular weight dependence of catalytic activity observed for Co(PhC)NaSO₄/poly(vinylamine) catalysts. A low molecular weight poly(vinylamines) appears to be more active than a high molecular weight poly(vinylamines), which corresponds to the higher basicity of the amine groups in the low molecular weight polymers as compared with those with higher molecular weights (Ch. IV).

Catalytic activity appears to increase almost linearly with the cationic polymer charge density for copolymers of vinylamine and vinyl-alcohol (Ch. VI) and poly(quaternary ammonium salts) (Ch. VIII). The electrostatic attraction between the cationic polymer and the thiol-anions play an important role in the enhancement of the local thiol-anion concentration in the vicinity of the catalytic sites. In addition, deprotonation of the activated complex may be facilitated, thus enhancing reaction rate.

Reaction rate is considerably diminished by increasing ionic strength, which can be explained by the shielding effect of salt on the electrostatic field of the macro-ion. For the same reason the polymer coil shrinks upon the addition of salt, but analysis of the
activation energies does not indicate the occurrence of rate limiting diffusion (Ch. II).

The importance of basicity, polymer charge density and ionic strength is also reflected by a strong rate dependence on pH (Ch. I and II).

Another polymeric feature responsible for high rates is the isolation of $\text{CoPc(NaSO}_3)_4$ sites by the polymeric coils, thus preventing the formation of catalytically inactive dimeric adducts. Accordingly, a first order rate dependence on polymer catalyst concentration was found (Ch. III).

Kinetic investigations show resemblance between these polymeric catalysts and enzymes, viz. Michaelis-Menten kinetics toward thiol and oxygen, a bell shaped rate dependence on pH and high turn-over numbers.

In the conversion of the hydrophobic dodecylmercaptan, not only cationic charge, but also hydrophobic binding sites in the catalyst domain seem to be important since this thiol, in contradistinction to 2-mercaptoethanol, can be converted catalytically in cationic micelles. Anionic micelles retard the reaction and a nonionic surfactant acts rather indifferently (Ch. VII). These results have lead to the conclusion that future polymeric catalysts suitable for the dodecylmercaptan oxidation should not only possess cationic charge and basic sites, but also hydrophobic binding sites.

The stability of the polymeric thiol oxidation catalysts in successive runs is rather poor in the case of poly(amines), but very good when poly(amine salts) are used as polymeric ligands. This has been attributed to the chemical inertness of the quaternary ammonium groups with respect to primary and secondary amine groups. These amine groups are probably attacked by the disulfides formed in the reaction (Ch. VIII).

The effect of immobilization of the $\text{CoPc(NaSO}_3)_4$ on solid supports of cross-linked poly(vinylamine) was investigated (Ch. IX). Despite
the fact that the resins are highly swollen in water, a rate limiting matrix diffusion occurs. This problem is inherent to the high intrinsic activity of the present catalysts. Anchorage to silica supports shows a promising enhancement.
SAMENVATTING

In dit proefschrift wordt een onderzoek beschreven naar het snelheidsverhogen effect van basische polymeren op de oxydatie van thiolen in disulfiden, waarbij kobalt(II)ferrocyanine-tetra-natrium sulfonaat (CoPc(NaSO₃)₄) als katalysator wordt gebruikt.

Een 20 tot 50 voudige snelheidstoename werd waargenomen wanneer CoPc(NaSO₃)₄ werd gebruikt dat aan basische polymeren was gebonden i.p.v. aan de monomere onzool.

De omzooming van 2-mercaptoethanol wordt beheerst door drie belangrijke parameters, die elk afzonderlijk de polymere katalytische activiteit sterk beïnvloeden: basischheid, ladingsdichtheid op het polymer en ionsterkte.

Basische groepen zijn nodig om het zwakere thiol te disociëren, waarbij thiolenen vrijkomen, welke in het algemeen als de reactieve deeltjes beschouwd worden (R. I). Het belang van basische groepen komt ook naar voren in de moleculargewichtsafhankelijkheid van de katalytische activiteit van CoPc(NaSO₃)₄/poly(vinylamine) katalysatoren. Een poly(vinylamine) met een laag moleculargewicht blijkt actiever te zijn dan een poly(vinylamine) met een hoger moleculargewicht, wat overeenkomt met de hogere basischheid van de amine groepen in polymeren met een laag moleculargewicht vergeleken met die met hogere moleculargewichten.

Bij copolymeren van vinylamine en vinylalcohol (R. VI) en poly-quaternaire ammoniumzouten (R. VIII) blijkt de katalytische activiteit nog steeds lineair met de kationische ladingsdichtheid op het polymer toe te nemen. De electrostatische aantrekking tussen de kationische polymer en de thiolenen speelt een belangrijke rol in de verhogen van de lokale thiolionium concentratie in de nabijheid van de katalytisch actieve plaatsen. Bovendien kan dehydratatie van het geactiveerd complex vergemakkelijkt worden, waardoor ook de reactie snelheid verhoogd wordt.
De reactiesnelheid wordt aanmerkelijk verlaagd bij toenemende ionsterkte, hetgeen verklaard kan worden door het afschermende effect van zout op het electrostatische veld van de macrолonen. Om dezelfde reden kruipt de polymeren klusen door het toevoegen van zout, maar een analyse van de activeringsenergie duidt niet op het optreden van een snelheidslimitering t.g.v. diffusie.

Het belang van basischiteit, ladingdichtheid en ionsterkte komt ook tot uiting in de sterke afhankelijkheid van de reactiesnelheid van de pH (N. I en II).

Een andere functie van het polymer is de afscherming van CoPc(SnSO₃)₄ door de polymeren klusen, waardoor de vorming van katalytisch inactieve dimere adducten wordt voorkomen. Dienovereenkomstig werd een eerste orde snelheidsafhankelijkheid van de polymer katalysatorconcentratie waargenomen (N. III).

Het kinetisch gedrag van deze polymer katalysatoren vertoont gelijkenis met dat van enzymen, nl. Michaelis-Menten kinetiek jegens chiol en zuurstof, een klokvormige snelheidsafhankelijkheid van de pH en hoge transversal numbers.

Bij de omzetting van het hydrofobe dodecylmercaptaan lijkt niet alleen kationische lading maar ook de aanwezigheid van hydrofobe bindingplaatsen in het katalysator domein van belang want dit chiol kan katalytisch omgezet worden in kationische micellen, in tegenstelling tot 2-mercaptoethanol. Anionische micellen vertragen de reactie en een nonionisch surfactant heeft negenog geen katalytisch effect (N. VII). Op grond van deze resultaten kon worden geconcludeerd dat toekomstige polymeren katalysatoren die geschikt zijn voor de oxidatie van dodecylmercaptaan, niet alleen kationische lading en basische groepen maar ook hydrofobe bindingseigenschappen moeten bezitten.

De stabiliteit van de polymeren thiolydatisiekatalysatoren is nogal slecht in het geval van poly(aminen), maar bijzonder goed indien poly(quaternaire ammoniumsalts) worden gebruikt als polymer liganden.
Deze waarnemingen zijn toegeschreven aan de chemische inertheid van de quaternaire ammoniumgroepen in vergelijking met primaire en secundaire amine groepen. Deze aminegroepen worden vermoedelijk door het disulfide, dat tijdens de reactie wordt gevormd, aangetast (H. VIII).

Het effect van immobalisatie van CoPc(NaSO₄)₄ op vaste dragers van vernet poly(vinylamine) werd onderzocht (H. IX). Ondanks het feit dat het drager-hars sterk gewoeld is in water, treedt een snelheidslimiterende matrixdiffusie op. Dit probleem is inherent aan de hoge intrinsieke activiteit van de onderhavige katalysatoren. Veronkering aan silicedragers toont een veelbelovende verbetering.
CURRICULUM VITAE

Wilfried M. Brouwer

Geboorte datum en plaats: 13 maart 1956 te Zeist

Opleiding:

Katholieke Scholengemeenschap "De Broul" te Zeist; gymnasium B (1976)
Rijksuniversiteit te Utrecht; kandidaatsexamen (1979, cum laude)
Rijksuniversiteit te Utrecht; doctoraalexamen (1981, cum laude)
specialisatie: fysische en colloïd chemie (Prof.dr. A. Vrij, Utrecht)
bijvak: chemische technologie (Prof.drs. H.S. van der Baan, Eindhoven)

Betrekking:

Vanaf 15 juli 1981 is hij werkzaam in de rang van wetenschappelijk
assistent bij de vakgroep Chemische Technologie van de Technische
Hogeschool Eindhoven. Hier werd in de groep van Prof.dr.ir.
A.L. German het onderzoek uitgevoerd dat is beschreven in dit
proefschrift.
DANKWOORD

Aan allen die hebben bijgedragen tot het tot stand komen van dit proefschrift ben ik dank verschuldigd.

Overbodig is het om mijn ouders, Reina en andere familieleden en vrienden te noemen.

Heerelijke gesprekken en discussies met o.a. prof.dr. L.A.A.G. Sluyterman (vakgroep Organische Chemie) en dr. T.P.M. Belien (vakgroep Anorganische Chemie) waren een logistische steun.

De directe betrokkenheid van de heer R.J.M. v.d. Wey bij het ontwerp en de ontwikkeling van de geroerde batch reactors heeft geleid tot een snelle oplevering, een prima performance en een laag uitvalpercentage van deze reactors.

Mej. C. Revers verzorgde adequaat het typen van dit manuscript.

Ik dank de vakgroep voor het meedelijk maken van congresbezoeken aan Prague, Florence en Lancaster.
Stellingen

1. Indien Kinura, Inaki en Takeno zo nauwkeurig de samenstelling van het copolymeren en de monomer voeding kunnen bepalen als zij opgeven, dan is de copolymerisatie reactie tussen vinylstaalimide en vinylacetaat niet te beschrijven met het Alfrey-Mayo model.

K. Kinura, Y. Inaki, K. Takeno, Makromol. Chem. 176 (1976), 2822
T. Alfrey, Jr., C. Goldfinger, J. Chem. Phys., 10 (1944), 806

2. De door Bansal e.a. opgestelde hypothese voor het verband tussen alcohol ketenlengte en de alcohol-zeep vermenging in het water-olie grensvlak in olie continue micro-emsies, is overeenkomt met de eigenaar der constituenten van olie continue micro-emsies bestaande uit water, toluol, natriumodeceylsulfate en alkylol alcohol niet algemeen toepasbaar.

H. Wachida, E. Tsuochida, Makromol. Chem. 177 (1976), 2206
E.A. Sakturov, S.B. Rudolpichgen, G.M. Skatimova, Polymer 24 (1983), 607

4. Markis en Joseph verwaarlozen ten onrechte het optreden van afschuiving als plastisch deformatie mechanisme bij de interpretatie van het spannings-rek gedrag van met glasbollen gevulde glasachtige polymere tijdens trek-experimenten.

M. Markis, E. Joseph, Intern. J. Polymeric Mat., 6 (1977), 1
5. Op grond van het anomalie, pH-afhankelijke viscositeitsgedrag van een polyvinylamine oplossing in water zijn de door Hockeith e.a. gekozen pH waarden waarbij de diameter van verhende polyvinylamine deeltjes en zo de zwellgraad wordt bepaald, niet de meest geschikte om veranderingen in deze zwellgraad vast te stellen.

6. De snel stijgende verkoop van huiscomputers kan niet verklaard worden door een sterke behoefte van de consument aan de prostatie die het product thuis kan leveren.

7. Natuurbehoud is conservatisme.

Eindhoven, 11 september 1984

W.M. Brouwer