ANALYTIC SPACES
AND
DYNAMIC PROGRAMMING
A MEASURE-THEORETIC APPROACH

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE
HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF.DR. S.T.M. ACKERMANS, VOOR EEN
COMMISSIE AANGEWZEEN DOOR HET COLLEGE VAN
DEKANEN IN HET OPENBAAR TE VERDEEDIGEN OP
VRIJDAG 8 JUNI 1984 TE 16.00 UUR

DOOR

JOHANNES GEORGIIUS FRANCISCUS THIEMANN

GEBORNE TE HOORN

1984
CENTRUM VOOR WISKUNDE EN INFORMATICA, AMSTERDAM
Dit proefschrift is goedgekeurd
door de promotoren

Prof. dr. F.H. Simons
en
Prof. dr. J. Wessels
CONTENTS

INTRODUCTION

I. MEASURE-THEORETIC PREREQUISITES
§ 1. Preliminaries 1
§ 2. Spaces of probabilities 6
§ 3. Universal measurability 10
§ 4. Souslin sets and Souslin functions 14
§ 5. Semicompact classes 25
§ 6. Measurability of integrals 31

II. ANALYTIC SPACES
§ 7. Analytic spaces 34
§ 8. Separating classes 49
§ 9. Probabilities on analytic spaces 55

III. DYNAMIC PROGRAMMING
§ 10. Decision models 75
§ 11. The expected utility and optimal strategies 81

REFERENCES 90

INDEX 91

SAMENVATTING 93

CURRICULUM VITAE 95
INTRODUCTION

Analytic topological spaces are used in dynamic programming in order to avoid certain measurability problems. In this monograph we give a measure-theoretic alternative for these spaces serving the same purpose. Before giving an overview of the contents, we briefly describe the measurability problems encountered in dynamic programming and indicate how they have been solved.

Consider a system that passes through a sequence of states in the course of time and suppose that a controller can influence each of the transitions of the system to a new state by taking certain actions. At each transition the new state of the system depends on the old state and on the action chosen by the controller in a stochastic way; it is the probability distribution of the new state that is determined by the old state and the action, rather than the new state itself. Also, for each realization of this process, i.e. for each sequence of states and actions, a utility is defined, that is, a number representing the desirability of the realization. Now the controller tries to choose his actions such as to maximize the expected utility. In general, this implies that the action to be chosen at each instant of time depends on the state the system is in at that time. The sequence of these choice functions, one for each transition of the system, is called a strategy.

When the state space, i.e. the set of states the system can be in, and the action space, i.e. the set of actions available to the controller, are finite or countably infinite, and when only finitely many transitions of the system are considered, no difficulties arise in defining the expectation of the utility. However, when these spaces are uncountable, this is no longer the case. For the expected utility to be definable it seems necessary that the state space and the action space are measurable spaces and that the choice functions in a strategy as well as the utility are measurable functions. In the construction of strategies yielding maximal expected utility one meets measurability problems that can be described in their simplest form as follows: If \(f \) is a measurable function of two variables, then, in general, \(\sup_y f(x,y) \) is not a measurable function of \(x \). Also, when the
supremum is attained for each x, there does not necessarily exist a measurable function φ such that \(\sup_y f(x, y) = f(x, \phi(x))\).

Blackwell was among the first who paid attention to these problems. He took Borel spaces as state and action spaces, a measurable utility and measurable strategies. Later on, in a paper by Blackwell, Freedman, and Orkin, this formalism was generalized: analytic state and action spaces, a semianalytic utility and analytically measurable strategies. Another generalization is due to Shreve, who took Borel spaces again, a semianalytic utility and universally measurable strategies. For papers in question see the references. In the last two formalisms the measurability problems mentioned earlier do no longer appear.

The use of Borel spaces and analytic spaces is unsatisfactory in so far as topological conditions are imposed on the system in order to avoid difficulties that are measure-theoretic by nature. Moreover, the theory of analytic spaces is far from trivial, and quite remote from the things one expects when turning to dynamic programming. In this monograph we shall develop, within a purely measure-theoretic framework, those parts of the theory of analytic spaces that are material for dynamic programming, and we shall show how they can be applied. The formalism for dynamic programming treated in the following is quite general: the utility need not be the sum of single-step utilities but may be an arbitrary function of the realization, while the restrictions imposed on the choice of the actions do not concern the actions themselves but rather the probabilities on the action space on which the choice is based.

The monograph is divided into three chapters. In Chapter I the measure-theoretic prerequisites are introduced, the main topics being universal measurability and the Souslin operation. This chapter is self-contained: apart from the Radon–Nikodym theorem and the martingale convergence theorem only elementary measure theory is required. In the second chapter analytic measurable spaces are introduced. The defining property of these spaces is common to all analytic topological spaces, and our measure-theoretic approach is therefore a generalization of the topological one. Also for this chapter no a priori knowledge is needed, and, consequently, it may serve as an introduction to the subject. However, only those topics are treated that are needed for the applications in Chapter III, or that serve a good conception. The final chapter is devoted to dynamic programming. Although familiarity with this subject is not needed for the understanding of this chapter, it will certainly add to its appreciation.
this part of the monograph should not be taken as introductory. The topics treated have been chosen so as to give the reader a good impression of the use of analytic measurable spaces. Consequently, results that are based on, say, a particular structure of the utility or on the choice of particular strategies are not considered.

Although there are some new results in this monograph and the purely measure-theoretic approach as such may be considered as new, on many occasions our line of reasoning was inspired by arguments found in the literature; our main sources were the books of Bertsekas & Shreve, Christensen, Hinderer, and Hoffmann-Jørgensen (see references).
CHAPTER 1
MEASURE-THEORETIC PREREQUISITES

The measure-theoretic prerequisites needed for the understanding of the theory of analytic spaces and their applications are collected in this chapter. In its first section only rather well-known facts are recalled (often with an indication of a proof) and some notations are introduced. In the second section sets of probabilities are equipped with a structure such as to make the theory of measurable spaces apply to them. The, perhaps less familiar, subjects of universal measurability and Souslin sets are treated from scratch in the sections 3 and 4, respectively. Also, in section 4, the first new result appears, viz. Proposition 4.8. In section 5 a non-topological compactness notion is introduced and applied to probabilities. Finally, in section 6, we derive a result on measurability of integrals that play a central role in Chapter III.

§ 1. Preliminaries

1) The terms: set, collection, and class all stand for the same thing. Which of them is used depends merely on the role played by them in the argument. A set is called countable when it is finite or countably infinite.

Let E be a set. Then for every pair A, B of subsets of E the complement (with respect to E) of A is denoted by A^c and the difference $A \cap B^c$ of A and B by $A \setminus B$. When A is a collection of subsets of E then $A^c = A \cup \{A^c \mid A \in A\}$. Moreover, $A_1 (A_2, A_3, A_4, \ldots)$ respectively) denotes the collection of those subsets of E that are finite intersections (finite unions, countable intersections, countable unions, respectively) of members of A, while $\sigma(A)$ stands for the σ-algebra generated by A, i.e., the smallest σ-algebra of subsets of E that contains A. Collections like $(A_\alpha)_{\alpha}$ will be simply denoted by A_α, etc. For each collection A of subsets of some set we have $A_{sd} = A_{ds}$; the inclusion $A_{sd} \subseteq A_{ds}$ is obvious, whereas the reverse inclusion follows from this by complementation and de Morgan's rule.
2) **DEFINITION.** A collection \mathcal{A} of sets is called a *Dynkin class* when

1) $\forall A, B \in \mathcal{A} \ [A \supseteq B \Rightarrow A \setminus B \in \mathcal{A}]$

2) if $(A_n)_{n \in \mathbb{N}}$ is an increasing sequence in \mathcal{A} then $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

For Dynkin classes we have the following proposition due to Dynkin, a proof of which can be found in [Ash] Theorem 4.1.2, and in [Cohn] Theorem 1.6.1.

PROPOSITION 1.1. Let \mathcal{A} be a collection of subsets of a set E such that $\Lambda_0 = \emptyset$ and $E \in \mathcal{A}$. Then $\sigma(\mathcal{A})$ is the smallest Dynkin class containing \mathcal{A}.

3) Next we collect some facts on mappings. Let φ be a mapping of a set E into a set F. For every subset A of E we define $\varphi A := \{ \varphi x \mid x \in A \}$, which is a subset of F. By φ^{-1} we denote the mapping of the collection of all subsets of F into the collection of all subsets of E defined by $\varphi^{-1}B := \{ x \in E \mid \varphi x \in B \}$. In particular we have $\varphi^{-1}F = E$ and $\varphi^{-1}\emptyset = \emptyset$. Note that we did not suppose φ to be injective or surjective. Note also that φ^{-1} does not map points of F on points of E, so φ^{-1} should not be considered as an inverse of φ in the usual sense.

For every collection \mathcal{B} of subsets of F we define $\varphi^{-1}\mathcal{B} := \{ \varphi^{-1}B \mid B \in \mathcal{B} \}$, which is a collection of subsets of E. Mappings like φ^{-1} will be used extensively in the sequel, so we list some of their properties.

4) The mapping φ^{-1} commutes with the set-theoretic operations union, intersection and complementation, i.e. for any pair A, B of subsets of F we have $\varphi^{-1}(A \cup B) = (\varphi^{-1}A) \cup (\varphi^{-1}B)$, $\varphi^{-1}(A \cap B) = (\varphi^{-1}A) \cap (\varphi^{-1}B)$ and $\varphi^{-1}(A^c) = (\varphi^{-1}A)^c$. More generally, we have, for every collection \mathcal{S} of subsets of F, the equalities $\varphi^{-1}(\cup \mathcal{S}) = \cup (\varphi^{-1}\mathcal{S})$ and $\varphi^{-1}(\cap \mathcal{S}) = \cap (\varphi^{-1}\mathcal{S})$.

As a simple consequence we have, for every collection \mathcal{S} of subsets of F, that $\varphi^{-1}(\cup \mathcal{S}) = (\cup \varphi^{-1}\mathcal{S})$, where \circ stands for any of the subscripts \cup, \cap, \cup, \cap or \cup.

The properties of φ^{-1} considered so far are simple consequences of the definition of φ^{-1}. Slightly more involved is the proof of the following property: when \mathcal{S} is a collection of subsets of F, then $\varphi^{-1}(\cap \mathcal{S}) = \cap (\varphi^{-1}\mathcal{S})$. To prove this we observe that $\cap \mathcal{S}$ is closed under the formation of countable unions and under complementation and that the
same holds for the collection \(\varphi^{-1}(\tau \mathcal{B}) \), due to the properties of \(\varphi^{-1} \) mentioned before. So \(\varphi^{-1}(\tau \mathcal{B}) \) is a \(\sigma \)-algebra which, moreover, contains \(\tau^{-1} \mathcal{B} \). Hence \(\varphi^{-1}(\tau \mathcal{B}) = \sigma(\tau^{-1} \mathcal{B}) \). On the other hand, the collection \\
\(\{ C \in \mathcal{F} \mid \tau^{-1} C \leq \tau(\varphi^{-1} \mathcal{B}) \} \) contains \(\mathcal{B} \) and it is closed under the formation of countable unions and under complementation. It therefore contains \(\sigma(\tau^{-1} \mathcal{B}) \) and, consequently, we have \(\varphi^{-1}(\tau \mathcal{B}) \leq \sigma(\tau^{-1} \mathcal{B}) \).

Each of the properties of \(\varphi^{-1} \) mentioned above expresses the fact that \(\varphi^{-1} \) commutes with a certain set-theoretic operation on collections of sets.

5) A particular case of the foregoing is forming the trace of a collection of sets. Let \(\mathcal{F} \) be a set, let \(\mathcal{B} \) be a collection of subsets of \(\mathcal{F} \), and let \(\mathcal{E} \) be a subset of \(\mathcal{F} \). The trace \(\mathcal{B}_{|\mathcal{E}} \) of \(\mathcal{B} \) on \(\mathcal{E} \) is defined to be the collection \(\{ B \cap \mathcal{E} \mid B \in \mathcal{B} \} \) of subsets of \(\mathcal{E} \). Obviously we have \(\mathcal{B}_{|\mathcal{E}} = \varphi_{|\mathcal{E}} \mathcal{B} \), where \(\varphi : \mathcal{E} \to \mathcal{F} \) is the identity on \(\mathcal{E} \). From this it follows for instance that the trace of a \(\sigma \)-algebra is again a \(\sigma \)-algebra.

6) The main object of interest in this monograph will be measurable spaces, i.e., pairs \((\mathcal{E}, \mathcal{B})\) where \(\mathcal{E} \) is a set and \(\mathcal{B} \) is a \(\sigma \)-algebra of subsets of \(\mathcal{E} \). Subsets of \(\mathcal{E} \) that belong to \(\mathcal{B} \) will be called measurable subsets of \((\mathcal{E}, \mathcal{B})\). To simplify the notation we shall, as a rule, not mention the \(\sigma \)-algebra of a measurable space when confusion is unlikely. A subset \(\mathcal{E} \) of a measurable space \((\mathcal{F}, \mathcal{B})\) will always be supposed to be endowed with the \(\sigma \)-algebra \(\mathcal{B} \); when we want to stress the measurable-space structure of \(\mathcal{E} \) we call \(\mathcal{E} \) a subspace of \(\mathcal{F} \) rather than a subset of \(\mathcal{F} \).

7) A product of measurable spaces will always be supposed to be equipped with the product \(\sigma \)-algebra. We recall some facts on this subject.

Let \((\mathcal{F}_i, \mathcal{B}_i)\) \(i \in I\) be a family of measurable spaces, let \(\mathcal{F} \) be the Cartesian product \(\prod_{i \in I} \mathcal{F}_i \) of the family \((\mathcal{F}_i)_{i \in I} \), and, for each \(i \in I \), let \(\pi_i : \mathcal{F} \to \mathcal{F}_i \) be the \(i \)-th coordinate on \(\mathcal{F} \), i.e., the mapping \(\pi_i : \mathcal{F} \to \mathcal{F}_i \) defined by \(\pi_i(x) = x_i \). The product \(\mathcal{B} = \bigotimes_{i \in I} \mathcal{B}_i \) of the family \((\mathcal{B}_i)_{i \in I} \) of \(\sigma \)-algebras is by definition the smallest \(\sigma \)-algebra \(\mathcal{B} \) on \(\mathcal{F} \) such that, for each \(i \in I \), the mapping \(\pi_i : (\mathcal{F}, \mathcal{B}) \to (\mathcal{F}_i, \mathcal{B}_i) \) is measurable.

The measurable space \((\mathcal{F}, \mathcal{B}) = \bigotimes_{i \in I} (\mathcal{F}_i, \mathcal{B}_i) \) will be denoted by \(\prod_{i \in I} (\mathcal{F}_i, \mathcal{B}_i) \) or simply by \(\prod_{i \in I} \mathcal{F}_i \) and it is called the product of the family \((\mathcal{F}_i, \mathcal{B}_i) \) \(i \in I\) of measurable spaces.
8) As is clear from its definition, the product σ-algebra $\mathcal{F} = \bigotimes_{i \in I} \mathcal{F}_i$ generated by the collection $\mathcal{E} := \bigcup_{i \in I} \mathcal{F}_i$ and therefore by the collection $\mathcal{F}_\mathcal{E}$. The members of the collection $\mathcal{F}_\mathcal{E}$ are called measurable cylinders; they are characterized by the fact that they can be written as $\Pi_{i \in I} A_i$, where $A_i \in \mathcal{F}_i$ for all $i \in I$ and $A_i = F_i$ for all but a finite number of $i \in I$.

9) Let (E, \mathcal{E}) be another measurable space and let $\varphi: E \to \Pi_{i \in I} \mathcal{F}_i$. Then

$\tilde{\varphi}^{-1} : \mathcal{F} = \bigotimes_{i \in I} \mathcal{F}_i \subseteq \varphi^{-1} = \bigcup_{i \in I} \mathcal{F}_i \subseteq (\bigotimes_{i \in I} \mathcal{F}_i) = \sigma \bigcup_{i \in I} (\bigotimes_{i \in I} \mathcal{F}_i) = \sigma \bigcup_{i \in I} (\bigotimes_{i \in I} \mathcal{F}_i) = \sigma \bigcup_{i \in I} \mathcal{F}_i$,

so $\varphi^{-1} \subseteq \bigotimes_{i \in I} \mathcal{F}_i \subseteq E$ iff $\forall_{i \in I} (\pi_i \circ \varphi)^{-1} \subseteq \mathcal{E}_i$, hence φ is measurable iff $\forall_{i \in I} (\pi_i \circ \varphi)$ is measurable. This property can be phrased as: "A mapping into a product space is measurable iff its coordinates are measurable".

10) When all spaces in a family \mathcal{F}_i are identical to a space \mathcal{F}, then the product space $\Pi_{i \in I} \mathcal{F}_i$ may be denoted by \mathcal{F}^I. In particular we have the spaces $\mathcal{E}^{\mathbb{N}}$ of all sequences of positive integers; each $n \in \mathbb{N}^{\mathbb{N}}$ equals the sequence (n_1, n_2, n_3, \ldots) of its coordinates.

When only two measurable spaces, say $(\mathcal{F}_1, \mathcal{F}_1)$ and $(\mathcal{F}_2, \mathcal{F}_2)$, are involved, the product space is denoted by $(\mathcal{F}_1, \mathcal{F}_1) \times (\mathcal{F}_2, \mathcal{F}_2)$ and the product σ-algebras by $\mathcal{F}_1 \otimes \mathcal{F}_2$. Cylinders are usually called rectangles in this case.

For any two collections A_1 and A_2 of subsets of \mathcal{F}_1 and \mathcal{F}_2, respectively, the collection $(A_1 \times A_2 \mid A_1 \in A_1$ and $A_2 \in A_2)$ is denoted by $A_1 \times A_2$.

11) Let (E, \mathcal{E}) be a measurable space. A probability on (E, \mathcal{E}) is a mapping $\nu: E \to [0, 1]$ such that $\nu(E) = 1$ and such that $\nu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \nu(A_n)$ for each sequence $(A_n)_{n \in \mathbb{N}}$ of mutually disjoint members of \mathcal{E}. When ν is a probability on (E, \mathcal{E}) and when φ is a measurable mapping of (E, \mathcal{E}) into a measurable space $(\mathcal{F}, \mathcal{F})$, then $\nu \circ \varphi^{-1}$ is a probability on $(\mathcal{F}, \mathcal{F})$. As a special case of this we have the following. Let ν be a probability on a product space $\Pi_{i \in I} (\mathcal{F}_i, \mathcal{F}_i)$. Then, for each $i' \in I$, the marginal of ν on $\Pi_{i \neq i'} (\mathcal{F}_i, \mathcal{F}_i)$ is defined to be the probability $\nu \circ \pi_i^{-1}$, where π_i is the projection of $\Pi_{i \in I} \mathcal{F}_i$ onto $\Pi_{i \in I'} \mathcal{F}_i$.

Frequently used probabilities are those concentrated at one point.

Let (E, \mathcal{E}) be a measurable space and let $\pi: E$.
on E is defined by $\delta_x(A) = 1_A(x)$ and it is called the probability concentrated at x. Note that (x) is not supposed to be a measurable subset of E. Obviously, for each measurable function f on E we have \[\int f \delta_x = f(x). \]

12) A subset A of a set E is said to separate a pair x, y of distinct points of E when either $x \in A$ and $y \notin A$ or $x \notin A$ and $y \in A$. A collection A of subsets of E is called separating if each pair of distinct points of E is separated by a member of A. A measurable space (E, \mathcal{E}) is called separated when E is separating and it is called countably separated when some countable subclass of \mathcal{E} is separating. When the σ-algebra \mathcal{E} is generated by a subclass \mathcal{A}, then a pair x, y of distinct points of E is separated by some member of \mathcal{A} and it is separated by some member of \mathcal{E} if \mathcal{A} contains \mathcal{E} because the collection of subsets of E that do not separate x and y is a σ-algebra and it therefore contains \mathcal{E} as soon as it contains \mathcal{A}.

Identification of points of a measurable space that are not separated by measurable sets yields a separated measurable space whose σ-algebra is isomorphic to the σ-algebra of the original space. Such an identification therefore is inessential in many situations. We do not, however, restrict ourselves to separated spaces as this turns out to be inconvenient.

13) A measurable space (E, \mathcal{E}) is called countably generated when the σ-algebra \mathcal{E} is generated by some countable subclass. When the σ-algebra \mathcal{E} of a measurable space is generated by a (not necessarily countable) subclass \mathcal{A} and when E_0 is a countably generated sub-σ-algebra of \mathcal{E}, then there exists a countable subclass A_0 of \mathcal{A} such that $E_0 = \sigma(A_0)$. This is a simple consequence of the fact that the collection $\cup(\sigma(A_0) | A_0 \text{ countable subclass of } \mathcal{A})$ is a σ-algebra which contains \mathcal{A} and therefore \mathcal{E}.

14) By \mathbb{N} we denote the set $\{1, 2, 3, \ldots\}$ of positive integers equipped with the σ-algebra of all its subsets. \mathbb{R} denotes the set of real numbers endowed with the σ-algebra generated by the collection of all intervals; the members of this σ-algebra are called Borel sets. $\overline{\mathbb{R}}$ is the set $\mathbb{R} \cup \{-\infty, +\infty\}$ equipped with the usual ordering and with the σ-algebra generated by the collection of intervals $[a, b]$ ($a, b \in \overline{\mathbb{R}}$). Addition and multiplication of \mathbb{R} are extended on $\overline{\mathbb{R}}$ in the usual way subject to the convention that $+(-\infty) = -\infty$ and $0 \cdot (-\infty) = 0 \cdot \infty = 0$.
Note that in \(\mathbb{R} \) multiplication by \(-1\) is not distributive over addition:
\[(-1) \cdot ((-\infty + (-\infty)) \neq (-1) \cdot \infty + (-1) \cdot (\infty). \]

By a function on a set \(X \) we mean a mapping of \(X \) into \(\mathbb{R} \). A function will be called positive when its values belong to \([0,\infty]\). For any set \(A \) the function \(I_A \) is defined by \(I_A(x) = 1 \) when \(x \in A \) and \(I_A(x) = 0 \) when \(x \notin A \). Mappings will often be denoted by their argument-value pairs separated by the symbol \(\mapsto \). Example: \(x \mapsto x^2 + 1 \) \((x \in \mathbb{R}) \) denotes the mapping defined on \(\mathbb{R} \) that assigns to \(x \) the value \(x^2 + 1 \).

\[\text{§ 2. Spaces of probabilities} \]

In this section the set of all probabilities on a measurable space is equipped with a certain structure, which makes it a measurable space with some desirable properties. These spaces of probabilities play a predominant role in the sequel; not only do many notions and results find their most natural formulation in terms of this structure, but also results bearing upon individual probabilities often can be derived more easily when these probabilities are considered as members of the measurable space of all probabilities on a certain space.

There are several ways to provide the set \(\mathcal{M} \) of all probabilities on a measurable space \((E,E)\) with a \(\sigma\)-algebra. One way is to endow this set with the metric corresponding to the total-variation norm, which turns \(\mathcal{M} \) into a metric space (see [Neveu] section IV.1). Next, one may equip \(\mathcal{M} \) with the \(\sigma\)-algebra generated by the topology of this metric space. A second method applies when the \(\sigma\)-algebra \(E \) itself is generated by some topology \(T \) on \(E \). In this case one may consider the smallest topology on \(\mathcal{M} \) such that the mapping \(\nu \mapsto \int_E f d\nu \) is continuous on \(\mathcal{M} \) for every bounded continuous function \(f \) on \((E,T)\). This, so-called weak, topology again can be used to generate a \(\sigma\)-algebra on \(\mathcal{M} \). In the latter procedure continuity may be replaced by upper semicontinuity; this results in a third construction of a \(\sigma\)-algebra on \(\mathcal{M} \) (see [Topšči]).

In our approach, however, we directly define a \(\sigma\)-algebra on \(\mathcal{M} \) without first constructing a topology.

DEFINITION. Let \((E,\mathcal{E})\) be a measurable space. The set of all probabilities on \(E \) will be denoted by \(\mathcal{P}(\mathcal{E}) \). For every \(A \in \mathcal{E} \) the function \(\nu \mapsto \nu(A) \) maps
\(E(E) \) into the measurable space \(E \) and \(\mathcal{E} \) is defined to be the smallest \(\sigma \)-algebra on \(E(E) \) with respect to which all these functions are measurable.

The measurable space \((E(E), \mathcal{E}) \) will also be denoted by \((E, \mathcal{E})^\sim \). When no confusion can arise both the set \(E(E) \) and the space \((E(E), \mathcal{E}) \) will be denoted by just \(E \).

The definition of \(\mathcal{E} \) can also be phrased: \(\mathcal{E} \) is the smallest \(\sigma \)-algebra on \(E(E) \) such that, for every \(A \in \mathcal{E} \), the function \(\mu \mapsto E f \downarrow A \mu \) is measurable. We shall see later on (Proposition 6.1) that this is equivalent to the measurability of \(\mu \mapsto \int f \, \mu \) for all bounded measurable functions \(f \) on \((E, \mathcal{E}) \). So, our construction of the \(\sigma \)-algebra \(\mathcal{E} \) bears some resemblance to the constructions discussed above and, in fact, coincides with them in some special cases (see Bertsekas & Shreve Proposition 7.25).

The set \(\{ \mu \mapsto \mu(A) \mid A \in \mathcal{E} \} \) of functions on \(E(E) \) in terms of which the \(\sigma \)-algebra \(\mathcal{E} \) is defined can be considerably reduced:

PROPOSITION 2.1. Let \((E, \mathcal{E}) \) be a measurable space and let \(A \) be a subclass of \(\mathcal{E} \) that generates \(\mathcal{E} \) and is closed under formation of finite intersections. Then \(\mathcal{E} \) is the smallest \(\sigma \)-algebra on \(E \) such that for every \(A \in \mathcal{A} \) the function \(\mu \mapsto \mu(A) \) on \((E, \mathcal{E}) \) is measurable.

PROOF. Let \(B \) be the smallest \(\sigma \)-algebra on \(E \) such that for each \(A \in \mathcal{A} \) the function \(\mu \mapsto \mu(A) \) is measurable on \((E, \mathcal{E}) \). It follows from the definition of \(\mathcal{E} \) and from \(A \in \mathcal{E} \) that \(\mathcal{A} \in \mathcal{E} \).

Now the sets \(A \in \mathcal{A} \) for which the function \(\mu \mapsto \mu(A) \) is measurable on \((E, \mathcal{E}) \) constitute a Dynkin class \(\mathcal{D} \) containing \(A \cup \{ E \} \). As the collection \(A \cup \{ E \} \) is closed under the formation of finite intersections it follows from Proposition 1.1 that \(\mathcal{D} = \sigma(A \cup \{ E \}) = \mathcal{E} \). So for every \(A \in \mathcal{E} \) the function \(\mu \mapsto \mu(A) \) is measurable on \((E, \mathcal{E}) \), which implies that \(\mathcal{A} \subset \mathcal{E} \).

The following proposition is a frequently used tool to check measurability of mappings into spaces of probabilities:

PROPOSITION 2.2. Let \((E, \mathcal{E}) \) be a measurable space and let \(A \) be a subclass of \(\mathcal{E} \) that generates \(\mathcal{E} \) and is closed under formation of finite intersections. Then a mapping \(\varphi : E \rightarrow \mathbb{F} \) of an arbitrary measurable space \(\mathbb{F} \) into \(\mathcal{E} \) is measurable iff for every \(A \in \mathcal{A} \) the function \(x \mapsto \varphi(x)(A) \) is measurable on \(\mathbb{F} \).
PROOF. The "only if" part is a trivial consequence of the definition of \mathcal{E}. So, for every $A \in \mathcal{A}$, let $\psi_A : \mathbb{E} \to \mathbb{F}$ be the mapping $\mu \to \mu(A)$ and suppose that the mapping $\psi_A \circ \psi$ is measurable. Denoting by \mathcal{F} and \mathcal{R} the σ-algebras of \mathbb{F} and \mathbb{R}, respectively, by Proposition 2.1 we have

$$
\mathcal{E} = \sigma \cup \bigcup_{A \in \mathcal{A}} \psi_A^{-1}(\mathcal{R})
$$

and, consequently,

$$
\psi^{-1}\mathcal{E} = \sigma \cup \bigcup_{A \in \mathcal{A}} \psi_A^{-1}(\psi_A^{-1}(\mathcal{R})) = \sigma \cup \bigcup_{A \in \mathcal{A}} [(\psi_A \circ \psi)^{-1}(\mathcal{R})] = \mathcal{F},
$$

because $(\psi_A \circ \psi)^{-1}(\mathcal{R}) \in \mathcal{F}$ for every $A \in \mathcal{A}$. So ψ is measurable. \square

In particular, the collection \mathcal{A} may be the whole of \mathbb{E}. This will be the case in most applications of Proposition 2.2. Note the similarity to the measurability property of mappings into product spaces mentioned in the preliminaries. In fact, a similar result holds for mappings into any measurable space whose σ-algebra is generated by a set of mappings.

We now give some applications of the foregoing proposition, which will be used in the sequel.

EXAMPLES.

1) Let $(\mathbb{E}, \mathcal{E})$ be a measurable space and let $\delta : \mathbb{E} \to \mathbb{E}$ be the mapping that maps each point x of \mathbb{E} onto the probability δ_x concentrated at that point. Then δ is measurable, because for each $A \in \mathcal{E}$ the number $\delta_x(A)$ equals $1_A(x)$, which is a measurable function of x.

2) Let ψ be a measurable mapping of a measurable space $(\mathbb{E}, \mathcal{E})$ into a measurable space $(\mathbb{F}, \mathcal{F})$. Then, for each probability μ on \mathbb{E}, $\mu \circ \psi^{-1}$ is a probability on \mathbb{F}. Moreover, $\mu \circ \psi^{-1}$ depends measurably on μ, i.e., $\mu \circ \psi^{-1}$ is a measurable mapping of \mathbb{E} into \mathbb{F}, because for each $B \in \mathcal{F}$ we have $(\mu \circ \psi^{-1})(B) = \mu(\psi^{-1}(B))$ and, since $\psi^{-1}(B) \in \mathcal{E}$, the last expression is a measurable function of μ.

3) When, in example 2), \(\tilde{\sigma} \) is taken to be a projection in a product space (see preliminaries 11) then it follows that the marginals of a probability on a product space depend measurably on that probability.

4) When, in example 2), \((\mathbb{F}, \mathbb{F})\) is taken to be \((\mathbb{F}, \mathbb{F})\) with \(\mathbb{F}_0 \subset \mathbb{E} \) and when \(q \) is taken to be the identity on \(\mathbb{F} \), then for each probability \(\nu \) on \(\mathbb{E} \) the probability \(\nu \circ \sigma^{-1} \) is the restriction of \(\nu \) to the sub-\(\sigma \)-algebra \(\mathbb{F}_0 \) of \(\mathbb{E} \). So the restriction of a probability to a sub-\(\sigma \)-algebra depends measurably on that probability.

5) Another example is the product of probabilities. Let \(\mathbb{E} \) and \(\mathbb{F} \) be measurable spaces. Then the product \(\nu \times \nu \) of a probability \(\nu \) on \(\mathbb{E} \) and a probability \(\nu \) on \(\mathbb{F} \) depends measurably on \(\nu \) and \(\nu \) simultaneously, i.e. \((\nu, \nu) \mapsto \nu \times \nu \) is a measurable mapping of \(\mathbb{E} \times \mathbb{F} \) into \((\mathbb{E} \times \mathbb{F})^{\mathbb{F}} \). To prove this we apply Proposition 2.2, taking for \(\mathcal{A} \) the collection of measurable rectangles of the product space \(\mathbb{E} \times \mathbb{F} \).

6) The last example we consider is the transition probability. A transition probability from a measurable space \((\mathbb{E}, \mathcal{E})\) to a measurable space \((\mathbb{F}, \mathcal{F})\) is a function \(p \) on \(\mathbb{E} \times \mathbb{F} \) such that for every \(B \subset \mathcal{F} \) the function \(x \mapsto p(x, B) \) is measurable and for every \(x \in \mathbb{E} \) the function \(B \mapsto p(x, B) \) is a probability on \(\mathcal{F} \). Clearly, \(p \) can be identified with a measurable mapping of \(\mathbb{E} \) into \(\mathbb{F} \). In fact, this will be the way by which transition probabilities will be introduced in section 9.

Certain properties of a measurable space \(\mathbb{E} \) are inherited by the space \(\mathbb{E} \), as is illustrated by the following proposition. Other examples will be given later.

Proposition 2.3. Let \((\mathbb{E}, \mathcal{E})\) be a measurable space. Then \(\mathcal{E} \) separates the points of \(\mathbb{E} \). When \((\mathbb{E}, \mathcal{E})\) is countably generated, then \((\mathbb{E}, \mathcal{E})\) is countably generated and countably separated.

Proof. Let \(\nu_1, \nu_2 \in \mathcal{E} \) and \(\nu_1 \neq \nu_2 \). Then \(\nu_1(A) \neq \nu_2(A) \) for some \(A \subset \mathbb{E} \). Hence \(\{u \in \mathcal{E} \mid u(A) \neq \nu_2(A)\} \) is a member of \(\mathcal{E} \) that separates \(\nu_1 \) and \(\nu_2 \). Now let \((\mathbb{E}, \mathcal{E})\) be countably generated and let \(\mathcal{C} \) be a countable generating subclass of \(\mathbb{E} \). Then by Proposition 2.1 the \(\sigma \)-algebra \(\mathcal{E} \) is generated by the functions \(u \mapsto u(A) \ (A \in \mathcal{C} \) and, hence, by the countable collection
\[(\mu \in \mathcal{E} \mid \mu(A) \geq \epsilon) \mid \epsilon \in \mathbb{Q}, A \in \mathcal{C}_0\], where \(\mathbb{Q}\) denotes the set of rational numbers. As \((\mathcal{E}, \mathcal{B})\) is separated, this countable generating collection must be separating as well.

Finally, we remark that the theory which was dealt with in this section can easily be extended to bounded measures, not necessarily probabilities.

§ 3. Universal measurability

Let \((E, \mathcal{E})\) be a measurable space and let \(\mu\) be a probability on \(\mathcal{E}\). By the completion \(\mathcal{E}_\mu\) of \(\mathcal{E}\) with respect to \(\mu\) we mean the collection of subsets \(A\) of \(E\) for which there exist sets \(B_1, B_2 \subseteq E\) (depending on \(A\)) such that \(B_1 \subseteq A \subseteq B_2\) and \(\mu(B_1) = \mu(B_2)\). It is well known (see [Cohn] Proposition 1.5.1) that \(\mathcal{E}_\mu\) is a \(\sigma\)-algebra containing \(\mathcal{E}\), and that \(\mu\) can be extended to a probability on \(\mathcal{E}_\mu\). So, as far as \(\mu\) is concerned, there is not much difference between the spaces \((E, \mathcal{E})\) and \((E, \mathcal{E}_\mu)\).

Now, the completion \(\mathcal{E}_\mu\) of \(\mathcal{E}\) depends on the probability \(\mu\) and one may ask whether there exists a \(\sigma\)-algebra which can be looked upon as a kind of completion of \(\mathcal{E}\) for all probabilities on \(\mathcal{E}\) simultaneously.

The subject of this section is to prove that such a completion does indeed exist, and that the measurability notion associated with it has some nice stability properties.

The usefulness of this generalized measurability concept will become evident in the subsequent sections where certain, not necessarily measurable, sets and mappings emerge which turn out to be measurable in this generalized sense.

DEFINITION. Let \((E, \mathcal{E})\) be a measurable space and for each probability \(\mu\) on \(\mathcal{E}\) let \(\mathcal{E}_\mu\) be the completion of \(\mathcal{E}\) with respect to \(\mu\).

A subset of \(\mathcal{E}\) is called universally measurable if it belongs to \(\mathcal{E}_\mu\) for every probability \(\mu\) on \(\mathcal{E}\). The collection of all universally measurable subsets of \((E, \mathcal{E})\) is denoted by \(\mathcal{U}(\mathcal{E})\) and is called the universal completion of \(\mathcal{E}\).
PROPOSITION 3.1. Let $(\mathbb{X}, \mathcal{E})$ be a measurable space. Then $\mathcal{U}(E)$ is a σ-algebra containing E. Then \mathcal{A} is a σ-algebra of subsets of \mathcal{E} such that $E \in \mathcal{A}$ and $\mathcal{U}(E)$ is the intersection of all σ-algebras containing E on \mathcal{E}. Consequently, $E \in \mathcal{U}(E)$.

PROOF. We have $\mathcal{U}(E) = \bigcap \mu \mathcal{F}_\mu$, where the intersection is taken over all probabilities μ on \mathcal{E}. Consequently $\mathcal{U}(E)$ is the intersection of a collection of σ-algebras and therefore it is a σ-algebra itself. Obviously, $E \in \mathcal{U}(E)$. Now let A be a σ-algebra such that $E \in A \subseteq \mathcal{U}(E)$ and let μ be a probability on \mathcal{E}. Then μ can be extended to \mathcal{E}_μ and, hence, to the sub-σ-algebra A of \mathcal{E}_μ. Let ν' be an extension of μ to \mathcal{A} and let $A \subseteq \mathcal{A}$. Then $A \in \mathcal{E}_\mu$, so there exist $B_1, B_2 \in \mathcal{E}$ such that $B_1 \subseteq A \subseteq B_2$ and $\mu(B_1) = \mu(B_2)$. This, however, implies $\mu(B_1) = \nu'(B_1) \leq \nu'(A) \leq \nu'(B_2) = \mu(B_2)$, so $\nu'(A)$ is uniquely determined by μ. From the arbitrariness of μ it follows that ν' is the unique extension of μ on \mathcal{A}. \[\square\]

The inclusion $E \subseteq \mathcal{U}(E)$ can be strict as will be seen later (see Proposition 4.1). When confusion is unlikely we shall denote both a probability on \mathcal{E} and its extension to $\mathcal{U}(E)$ by the same symbol.

The term "completion" for the collection $\mathcal{U}(E)$ is justified by the following proposition.

PROPOSITION 3.2. Let $(\mathbb{X}, \mathcal{E})$ be a measurable space. Then $\mathcal{U}(\mathcal{U}(E)) = \mathcal{U}(E)$, i.e. in the measurable space $(\mathbb{X}, \mathcal{U}(E))$ every universally measurable subset is measurable.

PROOF. Let $A \subseteq \mathcal{U}(\mathcal{U}(E))$. We shall prove that $A \subseteq \mathcal{U}(E)$, i.e. that $A \subseteq \mathcal{E}_\mu$ for every probability μ on \mathcal{E}. So, let μ be a probability on \mathcal{E} and let its extensions to $\mathcal{U}(E)$ and to $\mathcal{U}(\mathcal{U}(E))$ be denoted by μ as well. Since $A \subseteq \mathcal{U}(\mathcal{U}(E)) \subseteq (\mathcal{U}(E))_\mu$, there exists a set $B_1 \subseteq \mathcal{U}(E)$ such that $B_1 \subseteq A \subseteq \mu(B_1) = \mu(A)$ and $B_1 \in \mathcal{U}(E)$. From $B_1 \in \mathcal{U}(E) \subseteq \mathcal{E}_\mu$ it follows that there exists a set $C_1 \subseteq \mathcal{E}$ such that $C_1 \subseteq B_1$ and $\mu(C_1) = \mu(B_1)$, and hence such that $C_1 \subseteq A$ and $\mu(C_1) = \mu(A)$. By an analogous argument there exists a set $C_2 \subseteq \mathcal{E}$ such that $A \subseteq C_2$ and $\mu(A) = \mu(C_2)$. So $A \subseteq \mathcal{E}_\mu$. \[\square\]

As has been argued earlier, identification of points of a measurable space that are not separated by measurable sets is inessential in many cases. This is also the case with regard to universal completion. In fact,
the following proposition implies that the result of universal completion and identification of points does not depend on the order in which these two operations have been performed.

Proposition 3.3. A pair of points of a measurable space is separated by the measurable sets if it is separated by the universally measurable sets.

Proof. Let x and y be points in a measurable space (E, \mathcal{E}) that are separated by the collection $\mathcal{U}(E)$ of universally measurable sets. Then the probabilities δ_x and δ_y, which are defined on the σ-algebra of all subsets of E, do not coincide on $\mathcal{U}(E)$. By Proposition 2.1 this implies that these probabilities do not coincide on E either and that therefore the points x and y are separated by E.

We now turn to the measurability of mappings with respect to σ-algebras of universally measurable sets.

Definition. A mapping φ of a measurable space E into a measurable space F is called universally measurable when for each measurable subset B of F the set $\varphi^{-1}B$ is a universally measurable subset of E.

So, universal measurability with respect to the σ-algebras E and F is the same as measurability with respect to $\mathcal{U}(E)$ and F. Consequently a mapping of a measurable space into a product space is universally measurable iff its coordinates are universally measurable. Also in Proposition 2.2 the words "measurable" can be replaced by "universally measurable". Universal measurability with respect to E and F is equivalent also with measurability with respect to $\mathcal{U}(E)$ and $\mathcal{U}(F)$, as is stated in the following proposition.

Proposition 3.4. Let E and F be measurable spaces, let $\varphi: E \to F$ be universally measurable and B a universally measurable subset of F. Then $\varphi^{-1}B$ is a universally measurable subset of E.

Proof. Let \mathcal{E} be the σ-algebra of E. Due to Proposition 3.2 it is sufficient to prove that $\varphi^{-1}B$ belongs to $\mathcal{U}(\mathcal{E})$ or, equivalently, that $\varphi^{-1}B$ belongs to $(\mathcal{U}(E))_\nu$ for every probability ν on $\mathcal{U}(E)$.

Let therefore ν be the probability on $\mathcal{U}(E)$. Then $\nu \circ \varphi^{-1}$ is a probability on F. Now, B is a universally measurable subset of F, so there
exist measurable subsets B_1 and B_2 of F such that $B_1 \subset B \subset B_2$ and

$$(\nu \circ \psi^{-1})B_1 = (\nu \circ \psi^{-1})B.$$

and hence such that $\psi^{-1}B_1 \subset \psi^{-1}B \subset \psi^{-1}B_2$ and

$$(\nu \circ \psi^{-1})B_1 = \nu(\psi^{-1}B_2).$$

Since $\psi^{-1}B_1$ and $\psi^{-1}B_2$ belong to $U(E)$ by the universal measurability of ψ, this implies that $\psi^{-1}B \in (U(E))_\nu$.

\[\square\]

Corollary 3.5. A composition of universally measurable mappings is universally measurable.

As a particular kind of universally measurable mappings we have the universally measurable functions. Let (E, F) be a measurable space, μ a probability on E, and f a positive universally measurable function on E.

Since f is measurable with respect to the σ-algebra $U(E)$ and as μ is uniquely extendible to $U(E)$, we can define $\int f \, \mu$ to be the integral of f with respect to the measure space $(E, U(E), \mu)$. This integral is the unique extension, as a σ-additive functional, of the integral of positive measurable functions.

The last proposition in this section bears upon universal measurability in spaces of probabilities. Recall that the σ-algebra \bar{F} on the space \bar{E} of all probabilities on a measurable space (E, F) has been defined such that $\mu = \mu(A)$ is a measurable function on \bar{E} for every measurable subset A of E.

Proposition 3.6. Let E be a measurable space and A a universally measurable subset of E. Then the function $\nu = \nu(A)$ is universally measurable on \bar{E}.

Proof. We have to show that $\nu = \nu(A)$ is measurable with respect to $(\bar{E})_\nu$ for every probability ν on \bar{E}. So let ν be a probability on \bar{E} and let λ be defined on the σ-algebra \bar{F} of \bar{E} by $\lambda(B) := \int \mu(B) \, \nu(du)$. Then λ is easily seen to be a probability. As A is universally measurable and therefore belongs to \bar{E}, there exist sets $B_1, B_2 \in \bar{F}$ such that $B_1 \subset A \subset B_2$ and $\lambda(B_2 \setminus B_1) = 0$. Consequently, by the definition of λ we have

$$0 = \lambda(B_2 \setminus B_1) = \int \mu(B_2 \setminus B_1) \, \nu(du) = \int \mu(B_2) \, \nu(du) - \int \mu(B_1) \, \nu(du).$$

We also have for all $u \in \bar{E}$ the inequalities $\nu(B_1) \leq \nu(A) \leq \nu(B_2)$. So $\nu(A) = \nu(B_2)$ for ν-almost all $u \in \bar{E}$. Now $B_2 \in \bar{F}$, so $\nu(B_2)$ is a measurable function of ν. Therefore the function $\nu = \nu(A)$ is measurable with respect to $(\bar{E})_\nu$.

\[\square\]
As is easily seen, Proposition 3.6 is equivalent to the inclusion \([\mathcal{U}(\mathcal{E})]^{-} \subseteq \mathcal{U}(\mathcal{E})\). When the \(\sigma\)-algebra \(\mathcal{E}\) consists of \(\emptyset\) and \(\mathcal{E}\) only, then \(\mathcal{E}\) consists of only one probability and, consequently, this inclusion is in fact an equality. In all other cases, however, the inclusion is strict, as will be proved in section 4 (see the remark following Proposition 4.10).

§ 4. Souslin sets and Souslin functions

Let \(\mathcal{A}\) be a class of subsets of a set \(\mathcal{E}\). In general there is no simple construction principle by which the members of \(\sigma(\mathcal{A})\) can be obtained from those of \(\mathcal{A}\). In this section a construction principle, the Souslin operation, is considered which, when applied to a class \(\mathcal{A}\) meeting certain conditions, yields a class of sets which contains \(\sigma(\mathcal{A})\). Moreover, the class obtained is not too large, since it is itself contained in the \(\sigma\)-algebra of universally measurable sets derived from \(\sigma(\mathcal{A})\).

Another instance where the Souslin operation appears concerns projections in product spaces. Let \(S\) be a measurable subset of a product space \(\mathcal{E} \times \mathcal{F}\). Then the projection \(\{x \in \mathcal{E} \mid \exists y \in \mathcal{F} (x,y) \in S\}\) of \(S\) on \(\mathcal{E}\) is in general not a measurable subset of \(\mathcal{E}\). It can, however, be obtained from the measurable subsets of \(\mathcal{E}\) by application of the Souslin operation in many cases.

For the interesting history of the Souslin operation we refer to [Hoffmann-Jørgensen] Chapter II, § 11.

Recall that \(\mathbb{N}^\mathbb{N}\) is the space of all (infinite) sequences of positive integers and that each \(n \in \mathbb{N}^\mathbb{N}\) equals the (infinite) sequence \((n_1, n_2, n_3, \ldots)\) of its coordinates.

DEFINITION. Let \(A\) be a collection of sets and let \(V\) be the set of all finite sequences of positive integers. A **Souslin scheme** on \(A\) is a family \((A_x)_{x \in \mathbb{N}^\mathbb{N}}\), such that \(\forall x \in \mathbb{N}^\mathbb{N} A_x \subseteq A\). The **kernal** of a Souslin scheme \((A_x)_{x \in \mathbb{N}^\mathbb{N}}\) is the set

\[U = \bigcap_{n \in \mathbb{N}^\mathbb{N}} A_{(n_1, \ldots, n_k)} \]

The collection consisting of the kernels of all Souslin schemes on a collection \(A\) is called the **Souslin class** generated by \(A\); it is denoted by \(S(A)\). The operation \(S\), i.e. the mapping \(A \mapsto S(A)\), is called the Souslin operation. When \((\mathcal{E}, \mathcal{F})\) is a measurable space then the members of \(S(\mathcal{E})\) will be called **Souslin (sub)sets** of \((\mathcal{E}, \mathcal{F})\).
It follows directly from the definition of S that for each collection A and each $S \in S(A)$ there exists a countable subclass A_0 of A such that $S \in S(A_0)$. Also the implication $A = B \Rightarrow S(A) \subset S(B)$ and the inclusion $A \subset S(A)$ are obvious, but more can be said:

Proposition A.1. Let A be a collection of subsets of some set. Then

i) $A_0 \in S(A)$ and $A_0 \subset S(A)$,

ii) when $A_0 \in S(A)$ (in particular when A is closed under complementation) then $S(A) \subset S(A_0)$.

Proof.

i) Let $\{B_i\}_{i \in \mathbb{N}}$ be a sequence in A and let $A_{n_1, \ldots, n_k} := B_{n_1} \cap \cdots \cap B_{n_k}$ (or B_{n_1}).

Then

$$\bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k} = \bigcup_{i \in \mathbb{N}} B_i \quad \text{(or } \bigcap_{i \in \mathbb{N}} B_i) \quad .$$

So $A_0 \subset S(A)$ and $A_0 \subset S(A)$.

ii) To prove ii) we merely observe that by i) the collection

$$\{S \in S(A) \mid S^c \in S(A)\}$$

is a sub-σ-algebra of $S(A)$ which contains A. \square

It follows from ii) in the foregoing proposition that $S(A) \subset S(A_0)$ for every collection A of subsets of some set. So, the members of a σ-algebra can be obtained from the members of a generating class by complementation followed by the Bousin operation.

Like most of the set-theoretic operations considered up to now the Bousin operation is idempotent:

Proposition A.2. Let A be a collection of sets. Then $S(S(A)) = S(A)$.

Proof. The inclusion $S(A) \subset S(S(A))$ is obvious. To prove the reverse inclusion, let $A \subset S(S(A))$. Then A can be written as

$$A = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k},$$

where $A_{n_1, \ldots, n_k} \in S(A)$ for all n and k. Also, for each $n \in \mathbb{N}$ and $k \in \mathbb{N}$, we can write
\[A_{1, \ldots, n_k} = \bigcup_{m \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k} ; a_{m_1, \ldots, m_k} \]

with \(A_{n_1, \ldots, n_k} ; a_{m_1, \ldots, m_k} \in A \) for all \(m \) and \(k \). Consequently,

\[A = \bigcup_{m \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k} ; f(k) \]

where all indexed sets belong to \(A \). This equality is equivalent to

\[A = \bigcup_{m \in \mathbb{N}} \bigcup_{f : \mathbb{N} \to \mathbb{N}} \bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k} ; f(k) \]

because for every family \((S_{k,m})_{k \in \mathbb{N}, m \in \mathbb{N}} \) of sets we have

\[x \in \bigcap_{k \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} S_{k,m} \iff \exists m \in \mathbb{N} \forall k \in \mathbb{N} x \in S_{k,m} \]

\[\forall k \in \mathbb{N} \exists m \in \mathbb{N} \forall x \in S_{k,m} x \in \bigcap_{f : \mathbb{N} \to \mathbb{N}} \bigcup_{k \in \mathbb{N}} x \in S_{k,f(k)} \iff \exists f : \mathbb{N} \to \mathbb{N} \forall x \in S_{k,f(k)} x \in \bigcap_{k \in \mathbb{N}} S_{k,f(k)} \]

Next, in the expression for \(A \) we combine the two unions into one. To this end let \(\alpha : \mathbb{N} \to \mathbb{N} \) and \(\beta : \mathbb{N} \to \mathbb{N} \) be such that the mapping \(\pi = (\alpha(n), \beta(n)) \) is a surjection of \(\mathbb{N} \) onto \(\mathbb{N} \times \mathbb{N} \). Then for each sequence \(n \in \mathbb{N}^\mathbb{N} \) there exists a (non-unique) mapping \(g : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \), such that

\[n_i = \alpha(g(i,1)) \quad \text{and} \quad f(i,j) = \beta(g(i,j)) \quad (i, j \in \mathbb{N}). \]

Therefore we can write \(A \) in the form

\[A = \bigcup_{g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}} (k, l) \in \mathbb{N} \times \mathbb{N} \quad \alpha(g(1,1)), \ldots, \alpha(g(k,1)); \beta(g(k,1)), \ldots, \beta(g(k,l)) \]

where we have also combined the two intersections.

Our next step is the transformation of the set \(\mathbb{N} \times \mathbb{N} \), appearing twice, into \(\mathbb{N} \). Let \(\gamma : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) be a bijection such that
(1) \[\forall i,j,i',j' \in \mathbb{N} [i \neq i' \land j \neq j' \implies \gamma(i,j) < \gamma(i',j')] \].

Since \(\gamma \) is injective, for each mapping \(g: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) there exists a sequence \(h \in \mathbb{N}^{\mathbb{N}} \) such that \(g(i,j) = h(\gamma(i,j)) \) (\(1 \leq i,j \in \mathbb{N} \)). As a consequence we have

\[A = \bigcup_{h \in \mathbb{N}^{\mathbb{N}}} \bigcap_{(k,l) \in \mathbb{N} \times \mathbb{N}} A_{h} = \bigcap_{(h_{1}, \ldots, h_{j}) \in \mathbb{N}^{\mathbb{N}}} \bigcup_{j \in \mathbb{N}} A_{j}(h_{1}, \ldots, h_{j}) \cdot \]

It follows from (1) that the numbers \(\gamma(1,1), \ldots, \gamma(k,l) \) appearing in the multi-index do not exceed \(\gamma(k,l) \). So, the multi-index is a function \(F \) of the coordinates \(h_{1}, h_{2}, \ldots, h_{\gamma(k,l)} \) of \(h \) only. The function \(F \) itself depends on \(k \) and \(l \) only and therefore on \(\gamma(k,l) \) only, because \(\gamma \) is injective. As \(\gamma \) is bijective, we can replace \((k,l) \) by \(\gamma(k,l) \) in the intersection thus obtaining

\[A = \bigcup_{h \in \mathbb{N}^{\mathbb{N}}} \bigcap_{j \in \mathbb{N}} A_{j}(h_{1}, \ldots, h_{j}) \cdot \]

for suitably defined index functions \(F_{j} \) on \(\mathbb{N}^{\mathbb{N}} \) (\(j \in \mathbb{N} \)). Consequently, \(A \) belongs to \(S(A) \).

As a simple consequence of the two foregoing propositions a Souslin class is closed under the formation of countable unions and countable intersections. In general however, a Souslin class is not closed under complementation and therefore is not a \(\sigma \)-algebra.

The following two propositions express the fact that the Souslin operation commutes with certain other operations.

PROPOSITION 4.3. Let \(\varphi \) be a mapping of a set \(\mathcal{E} \) into a set \(\mathcal{F} \) and let \(S \) be a collection of subsets of \(\mathcal{F} \). Then \(\varphi^{-1}(S(S)) = S(\varphi^{-1}S) \).

PROOF. Since \(\varphi^{-1} \) commutes with unions and intersections, for each Souslin scheme \(S \) on \(S \) we have

\[\varphi^{-1} \left(\bigcup_{h \in \mathbb{N}^{\mathbb{N}}} \bigcap_{k \in \mathbb{N}} B_{1}, \ldots, B_{N} \right) = \bigcup_{h \in \mathbb{N}^{\mathbb{N}}} \bigcap_{k \in \mathbb{N}} \left(\varphi^{-1} B_{1}, \ldots, \varphi^{-1} B_{N} \right) \]

Hence the result. \[\square \]
PROPOSITION 4.4. Let \(F \) be a set, \(E \) a subset of \(F \) and \(B \) a collection of subsets of \(F \). Then

i) \(S(B)|_E = S(B|E) \)

ii) when, in addition, \(E \in S(B) \), then

\[
S(B)|_E = \{ S \in S(B) \mid S \subseteq E \}.
\]

PROOF.

i) Let \(\psi : E \to F \) be the identity on \(E \). Then the result follows from the preceding proposition.

ii) Let \(N \) be a subset of \(E \). When \(S \in S(B)|_E \), then for some \(S' \in S(B) \) we have \(S = S' \circ \psi \in [S(B)]_E = S(B) \). Then, on the other hand, \(S \subseteq S(B) \), then \(S = \emptyset \circ \psi \subseteq E \in S(B)|_E \).

The last set-theoretic property of Souslin classes we mention concerns product \(\sigma \)-algebras.

PROPOSITION 4.5. Let \((E,F)\) and \((F,G)\) be measurable spaces, let \(A \) be a collection of subsets of \(E \) such that \(E \in S(A) \), and let \(B \) be a collection of subsets of \(F \) such that \(F \in S(B) \). Then \(E \times F \in S(A \times B) \). In particular, \(E \times F \in S(E \times F) \).

PROOF. As a simple consequence of the definition of the Souslin operation we have, for each \(B \in B \),

\[
S(A) \times B = \{ S \times B \mid S \in S(A) \} = S((A \times B) \upharpoonright A \times B) \subseteq S(A \times B).
\]

Consequently, \(S(A) \times B \subset S(A \times B) \).

Interchanging the role of \(A \) and \(B \) in the foregoing argument we get \(A \times S(B) \subseteq S(A \times B) \) and, applying this argument to the collections \(A \) and \(S(B) \) instead of \(A \) and \(B \), we get \(S(A) \times S(B) \subseteq S(A \times S(B)) \). The last two inclusions yield:

\[
E \times F \subseteq S(A) \times S(B) \subseteq S(A \times S(B)) \subseteq S(A \times B) = S(A \times B).
\]

Now the complement of any measurable rectangle in \(E \times F \) is the union of two such rectangles, so

\[
(E \times F)^c = (E \times F)^c = [S(A \times B)]^c = S(A \times B).
\]
It now follows from the second part of Proposition 4.1 that
\[E \circ F = \sigma(E \times F) \subseteq S(A \times B). \]

Beside the set-theoretic properties mentioned above, Souslin classes have some useful measure-theoretic features. To start with, we have the following relation to universally measurable sets.

Proposition 4.6. Let \((\mathbb{E}, E)\) be a measurable space. Then each Souslin set is universally measurable and the \(\sigma\)-algebra of universally measurable sets is closed under the Souslin operation, i.e., \(S(E) \subseteq U(E) = SU(E)\).

The proof of this proposition will be combined with the proof of Proposition 5.2.

From the foregoing sections we know that for every (universally) measurable set \(A\) in a measurable space \((\mathbb{E}, E)\) the function \(\mu \mapsto \mu(A)\) is (universally) measurable on \(\mathbb{E}\). What can be said of this function when \(A\) is a Souslin set? Of course, in general measurability with respect to \(S(E)\) is not defined, as \(S(E)\) may fail to be a \(\sigma\)-algebra.

In order to describe the dependence of \(\mu(A)\) on \(\mu\) when \(A\) is a Souslin set, we introduce functions which closely resemble the measurable functions.

Definition. Let \((\mathbb{E}, E)\) be a measurable space. A function \(f: \mathbb{E} \rightarrow \mathbb{R}\) is called a Souslin function if \(\{x \in \mathbb{E} \mid f(x) > a\} \subseteq S(E)\) for each \(a \in \mathbb{R}\).

The class of Souslin functions on a measurable space is closed under certain operations as stated in the following proposition. However, when \(f\) is a Souslin function, the function \(-f\) need not be one, because the complement of a Souslin set may not be a Souslin set.

Note that in the following proposition we use the conventions \(\ast - \ast - \ast = \ast\) and \(\ast + \ast = 0\) (see Preliminaries 14).

Proposition 4.7.

i) Let \(\{f_n\}_{n \in \mathbb{N}}\) be a sequence of Souslin functions on a measurable space. Then sup \(f_n\), inf \(f_n\), lim sup \(f_n\), and lim inf \(f_n\) are Souslin functions as well.
i) Let f and g be Souslin functions on a measurable space. Then $f + g$
also is a Souslin function. When in addition f and g are positive,
then fg is a Souslin function as well.

Proof. Let the functions be defined on a measurable space (X,E).

1) For every $a \in \mathbb{R}$ we have

$$\{x \in X \mid \sup_{n} f_{n}(x) > a\} = \bigcup_{n \in \mathbb{N}} \{x \in X \mid f_{n}(x) > a\} \in S(E)_{\mathbb{Q}} = S(E)$$

and

$$\{x \in X \mid \inf_{n} f_{n}(x) > a\} = \bigcap_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} \{x \in X \mid f_{n}(x) > s + \frac{1}{m}\} \in S(E)_{\mathbb{Q}} = S(E).$$

So $\sup_{n} f_{n}$ and $\inf_{n} f_{n}$ are Souslin functions. From this and the

equalities $\limsup_{n} f_{n} = \inf_{n} \sup_{m \in \mathbb{N}} f_{m}$ and $\liminf_{n} f_{n} = \sup_{n} \inf_{m \in \mathbb{N}} f_{m}$

the remainder of i) follows.

ii) For every $a \in \mathbb{R}$ we have

$$\{fg > a\} = \bigcup_{r \in \mathbb{Q}} \{x \in X \mid \sup_{r \in \mathbb{Q}} f_{r}(x) \in \mathbb{Q} \cap \mathbb{Q} \land \inf_{r \in \mathbb{Q}} g_{r}(x) > \frac{a}{r}\} \in S(E)_{\mathbb{Q}} = S(E),$$

where Q is the set of rational numbers. So $f + g$ is a Souslin function.

For f and g positive and $a \geq 0$ we have

$$\{fg > a\} = \bigcup_{r > 0} \{x \in X \mid f(x) > r \land \inf_{r > 0} g_{r}(x) > \frac{a}{r}\} \in S(E)$$

which implies that fg is a Souslin function.

Recall that we introduced Souslin functions in order to describe the
function $\mu \mapsto \mu(A)$ for Souslin sets A.

Proposition 4.6. Let A be a Souslin set of a measurable space E. Then

$\mu \mapsto \mu(A)$ is a Souslin function on E.

The proof of this proposition will be combined with the proof of
Proposition 5.2.
We conclude this section with some results that will not be used in the rest of this monograph. We first consider the inclusions \(E \subseteq S(E) \subseteq U(E) \) and \([U(E)]^c \subseteq U(\bar{E})\), as given in Proposition 4.6 and the remark following Proposition 3.6, and in particular the question whether these inclusions are strict.

Proposition 4.2. Let \((E,F)\) be a countably generated measurable space that can be mapped measurably onto the product space \(E \times \mathbb{N}\). Then \(S(E)\) is not closed under complementation.

Proof. Let \(A = \{A_1, A_2, \ldots\} \) be a countable generating subclass of \(F \) that is closed under complementation. Then by Proposition 4.1, \(E = \sigma(A) \subseteq S(A) \subseteq S(E) \), so \(S(E) = S(A) \).

Let \(\mathcal{F} \) be the set of all finite sequences of positive integers and let \(F \) be the product space \(E \times \mathcal{F} \). Moreover, let the subset \(U \) of \(E \times \mathcal{F} \) be defined by

\[
U := \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathcal{F}} \{y \in F \mid y(n_1, \ldots, n_k) = 1\}.
\]

Then \(U \) is a Souslin subset of \(E \times \mathcal{F} \). Also, for each \(y \in \mathcal{F} \), we find for the "\(y \)-section" of \(\mathcal{F} \):

\[
\{x \in E \mid (x,y) \in U\} = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathcal{F}} \{y(n_1, \ldots, n_k) = 1\}.
\]

So for each \(S \subseteq S(A) \) we have \(S = \{x \in E \mid (x,y) \in U\} \) for some \(y \in \mathcal{F} \).

Now \(F \) is countably infinite, so \(F \) is isomorphic to \(\mathbb{N} \times \mathcal{F} \) and, therefore, there exists a measurable surjection \(\psi : E \rightarrow F \). The mapping \(\chi : E \rightarrow E \times \mathcal{F} \), defined by \(\chi(x) = (x, \psi(x)) \), is measurable, because its coordinates are, and \(\chi[U] \) is a Souslin subset of \(E \) by Proposition 4.3.

It will be sufficient to prove, that the complement \(C \) of \(\chi[U] \) is not a Souslin set of \(F \). We reason by contradiction. Suppose \(C \subseteq S(E) \). Then \(C \subseteq S(A) \) and therefore \(U = \{x \in E \mid (x,y_0) \in U\} \) for some \(y_0 \in \mathcal{F} \). Since \(\psi \) is surjective, \(y_0 = \psi(x_0) \) for some \(x_0 \in E \). Now we have the following equivalences:

\[
x_0 \in C \Leftrightarrow (x_0,y_0) \in U \Leftrightarrow (x_0,\psi(x_0)) \in U \Leftrightarrow x_0 \in \chi^{-1}U \Leftrightarrow x_0 \notin C,
\]

which is a contradiction. \(\square \)
PROPOSITION 4.10. Let \((E, \mathcal{E})\) be a measurable space and let \(E \neq (\emptyset, \mathcal{E})\). Then \(S(\overline{E})\) is not closed under complementation.

PROOF. Let \(A \subset E \setminus (\emptyset, \mathcal{E})\), and let \(x \in A\) and \(y \notin A\). Then \(\delta_x(A) = 1 \neq 0 = \delta_y(A)\), so \(\delta_x \neq \delta_y\). Consequently,

\[
I := \{(\lambda \delta_x + (1-\lambda) \delta_y) \mid \lambda \in (0,1]\}
\]

is a subspace of \(\overline{E}\) which is isomorphic to the interval \((0,1]\).

Next consider the mapping

\[
a = \sum_{k=1}^{\infty} \frac{-\langle n_1, \ldots, n_k \rangle}{2^k}
\]

of \(\mathbb{N}^\mathbb{N}\) onto \((0,1]\). As this mapping is an isomorphism, the space \((0,1]\) can be mapped measurably onto \(\mathbb{N}^\mathbb{N}\).

The foregoing implies that \(I\) can be mapped measurably onto \(\mathbb{N}^\mathbb{N}\), and, as a consequence of the foregoing proposition, the Souslin class of \(I\) is not closed under complementation. As the Souslin class of \(I\) is the trace on \(I\) of the Souslin class \(S(\overline{E})\) of \(\overline{E}\), the class \(S(\overline{E})\) is not closed under complementation either.

Now let \((E, \mathcal{E})\) be a measurable space such that \(E \neq (\emptyset, \mathcal{E})\). Then \(\mathcal{U}(E) \neq (\emptyset, \mathcal{E})\) and it follows from the foregoing proposition applied to the space \((E, \mathcal{U}(E))\) that \(S(\mathcal{U}(E))\) is not closed under complementation and that the inclusion \(\mathcal{U}(E)^- \subset S(\mathcal{U}(E))\) is therefore strict. From the inclusion \(\mathcal{U}(E^-) = \mathcal{U}(E)\) mentioned after Proposition 3.6 and from Proposition 4.6 we deduce

\[
S(\mathcal{U}(E)^-) \subset S(\mathcal{U}(E)) = \mathcal{U}(E) .
\]

The inclusion \(\mathcal{U}(E^-) \subset \mathcal{U}(E)\) is therefore strict.

As an interesting consequence of Proposition 4.9 we have:

PROPOSITION 4.11. Let \(\mathcal{B}\) be the \(\sigma\)-algebra of Borel subsets of \(\mathbb{R}\). Then the inclusions \(\mathcal{B} \subset S(\mathcal{B}) \subset \mathcal{U}(\mathcal{B})\) are strict and the \(\sigma\)-algebra \(\mathcal{U}(\mathcal{B})\) is not countably generated.

PROOF. The space \((\mathbb{R}, \mathcal{G})\) can be mapped measurably onto its subspace \((0,1]\), e.g. by the mapping \(x \mapsto (1 + x^2)^{-1}\), and the space \((0,1]\) can be mapped
measurably onto $\mathbb{N}^\mathbb{N}$ (see the proof of Proposition 4.10). So, $(\mathcal{M}, \mathcal{B})$ can be mapped measurably onto $\mathbb{N}^\mathbb{N}$ and, of course, the same holds for $(\mathcal{M}, \mathcal{U}(\mathcal{B}))$.

Since \mathcal{B} is countably generated, by Proposition 4.9 the collection $\mathcal{S}(\mathcal{B})$ is not closed under complementation and therefore it is not a σ-algebra. Consequently, the inclusions $\mathcal{B} \subseteq \mathcal{S}(\mathcal{B}) = \mathcal{U}(\mathcal{B})$ are strict.

Next suppose that $\mathcal{U}(\mathcal{B})$ is countably generated. Then it follows from Proposition 4.9 applied to the space $(\mathcal{M}, \mathcal{U}(\mathcal{B}))$ that $\mathcal{S}(\mathcal{U}(\mathcal{B}))$ is not closed under complementation, which contradicts Proposition 4.6. So $\mathcal{U}(\mathcal{B})$ is not countably generated.

Beside the σ-algebra of universally measurable sets there is another σ-algebra of subsets of a measurable space which has equally nice properties. The remainder of this section is devoted to this σ-algebra. The result will not be used in the sequel.

For any measurable space $(\mathcal{E}, \mathcal{E})$ let $\mathcal{L}(\mathcal{E})$ be the smallest σ-algebra of subsets of \mathcal{E} that contains \mathcal{E} and is closed under the Souslin operation S. Following Bertsekas and Shreve we call $\mathcal{L}(\mathcal{E})$ the limit-σ-algebra of $(\mathcal{E}, \mathcal{E})$ and we call its members limit measurable subsets of $(\mathcal{E}, \mathcal{E})$ (see [Bertsekas & Shreve] p. 292).

All properties of the σ-algebra of universally measurable sets derived up to now are shared by the σ-algebra of limit measurable sets, as will be proved presently.

Since the role of universally measurable sets and universally measurable mappings in the remainder of this monograph is based entirely on these common properties, the adjective "universally measurable" can be replaced everywhere by "limit measurable" without affecting the validity of the results.

A property of limit σ-algebras that is possibly not shared by all universal completions is the equality

$$\mathcal{L}(\mathcal{E}) = \bigcup_{\mathcal{E}_0} \mathcal{L}(\mathcal{E}_0),$$

where the union is over all countably generated sub-σ-algebras \mathcal{E}_0 of \mathcal{E}. To prove this equality we merely note that the righthand side is a σ-algebra which is closed under S.
To prove the analogy claimed above we first observe that, due to Proposition 4.6, for every measurable space \((E, E)\) we have \(L(E) \subseteq U(E)\). From this inclusion the analogues of the Propositions 3.1 and 3.3 for the \(\sigma\)-algebra of limit measurable sets easily follow. As to Proposition 3.4, we remark that for a limit measurable mapping \(\varphi: (E, E) \rightarrow (F, F)\) the collection \(\{B \subseteq F \mid \varphi^{-1}B \in L(E)\}\) is a \(\sigma\)-algebra which is closed under \(S\) and which contains \(F\). The analogue of Corollary 3.5 is a simple consequence of the analogue of Proposition 3.4 again, while the analogue of Proposition 3.2 follows directly from the definition of \(L\).

The proof of the analogue of Proposition 3.6 is slightly more laborious. Let \((E, E)\) be a measurable space and \(B\) the collection consisting of those members \(A\) of \(U(E)\) for which the function \(\mu = \mu(A)\) on \(E\) is limit measurable, i.e., measurable with respect to \(L(E)\). \(B\) is easily seen to be a Dynkin class. Zorn's lemma implies that among the subclasses of \(B\) that contain \(E\) and are closed under the formation of finite intersections, there is a maximal one, say \(A\). By Dynkin's theorem (Proposition 1.1) we have \(\sigma(A) \subseteq B\) and the maximality of \(A\) therefore implies that \(\sigma(A) = A\), i.e., that \(A\) is a \(\sigma\)-algebra.

We now consider the space \((E, A)\). Since \(E \subseteq A \subseteq U(E)\), it follows from Proposition 3.1 that the probabilities on \(E\) and those on \(A\) can be identified in an obvious way, so the spaces \((E, E)\)'s and \((E, A)\)'s are composed of the same set \(\mathcal{F}\) of probabilities. Now \(A \supseteq B\), so for every \(A \in A\) the function \(\mu = \mu(A)\) on \(E\) is measurable with respect to \(L(E)\) and consequently \(A \subseteq L(E)\). It follows from Proposition 4.8, applied to the space \((E, A)\), that for every \(A \in S(A)\) we have \(\bigwedge_{\lambda \in \mathbb{R}} \{\mu \in L(E) \mid \mu(A) > \lambda\} \subseteq S(A)\) and, as \(S(A) \subseteq SL(E) = L(E)\), also that \(\mu = \mu(A)\) is limit measurable on \(E\).

Due to the maximality of \(A\) again we conclude from this that \(S(A) = A\). So \(A\) is a \(\sigma\)-algebra which contains \(E\) and which is closed under \(S\) and it therefore contains \(L(E)\).

We thus have proved the analogue of Proposition 3.6, that for every limit measurable subset \(A\) of \(E\) the function \(\mu = \mu(A)\) on \(E\) is limit measurable.

The proof of Proposition 4.11 applies also to the limit-\(\sigma\)-algebra of the space \(E\) and this \(\sigma\)-algebra is therefore not countably generated.
§ 5. Semicompact classes

In this section we introduce the concept of a semicompact class. "Countably compact" might have been a more suitable adjective for these classes, because their defining property is precisely the set-theoretic feature exhibited by the class of closed subsets of a countably compact topological space. However, the term "semicompact" is the most usual one.

The usefulness of semicompact classes lies in the fact that σ-additivity of functions defined on algebras of sets can be deduced from certain approximation properties of semicompact classes (see [Revesz] Proposition 1.6.2; note that in this reference the term "compact" is used instead of "semicompact").

DEFINITION. A collection A of sets is said to possess the finite intersection property if every finite subcollection of A has a nonempty intersection. A collection A of sets is called semicompact if every countable subcollection of A which possesses the finite intersection property has a nonempty intersection.

PROPOSITION 5.1. When C is a semicompact collection of sets, then C_{σ} is semicompact as well.

PROOF. Let $\{B_n : n \in \mathbb{N}\}$ be a subcollection of C_{σ} having the finite intersection property. We first prove that there exists a subcollection $\{C_n : n \in \mathbb{N}\} \subseteq C$ having the finite intersection property and such that $\forall n \in \mathbb{N} \colon C_n \subseteq B_n$.

We proceed by recursion. Let $n \in \mathbb{N}$ and suppose that $C_1, \ldots, C_{n-1} \subseteq C$ have been defined such that the collection $B' := \{C_1, \ldots, C_{n-1}, B_n, B_{n+1}, \ldots\}$ has the finite intersection property.

As $B_n \subseteq C_{\sigma}$, we have $B_n = \bigcup_{m \leq n} C_m$ for some $p \in \mathbb{N}$ and $C_1, \ldots, C_p \subseteq C$. Now for some $m \in \{1, \ldots, p\}$ the collection $B' \cup \{C_m\}$ has the finite intersection property; if not, then for each $m \in \{1, \ldots, p\}$ there exists a finite subcollection B''_m of B' such that $(B''_m) \cap C_m = \emptyset$. Consequently, $\bigcup_{m \leq n} B''_m$ is a finite subcollection of B' whose intersection does not meet $\bigcup_{m \leq n} C_m$ and this contradicts the finite intersection property of B'. So there exists a set $C_n \in C$ such that $B' \cup \{C_n\}$, and therefore also $\{C_1, \ldots, C_{n-1}, C_n, B_{n+1}, \ldots\}$, has the finite intersection property.
The sequence \((C_{n})_{n \in \mathbb{N}}\) constructed in this way has the desired properties. These properties and the semicompleteness of \(C\) now imply that
\[
\bigcap_{n \in \mathbb{N}} B_{n} = \bigcap_{n \in \mathbb{N}} C_{n} \neq \emptyset.
\]
Finally it follows from the arbitrariness of the sequence \((B_{n})_{n \in \mathbb{N}}\) that \(C_{a}\) is semicomplete.

Next, let \(B\) be a countable subclass of \(C_{a}\) such that \(aB = \emptyset\). Then
\[
\bar{B} = \left\{ n \in \mathbb{N} \mid n \in B \right\}
\]
for a suitable choice of \(B_{n} \in C_{a}\). Hence
\[
\bigcap_{(n,m) \in B} C_{nm} = aB = \emptyset
\]
and, as \(C_{a}\) is semicomplete, \(\bigcap_{(n,m) \in I} C_{nm} = \emptyset\) for some finite subset \(I \subseteq \mathbb{N}^{2}\). This implies that \(B\) has a finite subclass the intersection of which is empty. From the arbitrariness of \(B\) it follows that \(C_{a}\) is semicomplete.

Let \(\lambda\) be the Lebesgue measure on \(\mathbb{R}\). It is well known that every Lebesgue-measurable subset \(A\) of \(\mathbb{R}\) can be approximated from the inside by compact sets in the following sense:
\[
\lambda(A) = \sup \{ \lambda(B) \mid B \subseteq A \text{ and } B \text{ compact} \}.
\]
This property of the Lebesgue measure is called inner regularity. The following proposition shows that all probabilities on a measurable space are inner regular with respect to suitably chosen collections of subsets of the space.

Proposition 5.2. Let \((E, \mathcal{E})\) be a measurable space and let \(C\) be a collection of subsets of \(E\) such that \(C \subseteq E \subseteq \mathcal{E}(C)\). Then
\[
\mu(A) = \sup \{ \mu(B) \mid B \subseteq A \text{ and } B \subseteq C_{a}\}
\]
for every probability \(\mu\) on \(E\) and for every universally measurable subset \(A\) of \(E\).

Proof. As announced, the proofs of the propositions 4.6 and 4.8 and of the present proposition will be given simultaneously. For pairs \((n_{1}, \ldots, n_{l}), (m_{1}, \ldots, m_{j})\) of sequences (of length \(l\)) of positive integers we define \((n_{1}, \ldots, n_{l}) < (m_{1}, \ldots, m_{j})\) to mean \(n_{j} < m_{j}\) \((j = 1, \ldots, l)\).

Let \(A \in \mathcal{E}(E)\). Then by the definition of \(\mathcal{E}\) we can write
\[
A = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} A_{n_{1} \ldots n_{k}},
\]
where the sets \((A_{n_{1} \ldots n_{k}})\) belong to \(E\). For each finite sequence \((n_{1}, \ldots, n_{k})\)
of positive integers we define

$$\mathcal{B}_{n_1, \ldots, n_k} = \bigcup_{k \in \mathbb{N}} \left(\bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k} \right) \cap (n_1, \ldots, n_k) \leq (m_1, \ldots, m_k).$$

Since both the intersection and the union occurring in this definition are finite, the sets $$\mathcal{B}_{n_1, \ldots, n_k}$$ belong to $$\mathcal{E}$$. Also for each sequence $$m$$ of positive integers the sequence $$(\mathcal{B}_{n_1, \ldots, n_k})_{k \in \mathbb{N}}$$ of sets is decreasing and, as we shall show, $$\bigcap_{k \in \mathbb{N}} \mathcal{B}_{n_1, \ldots, n_k} = A$$. To prove this inclusion, let $$x \in \bigcap_{k \in \mathbb{N}} \mathcal{B}_{n_1, \ldots, n_k}$$. Then by the definition of the sets $$\mathcal{B}_{n_1, \ldots, n_k}$$ we have

$$\forall k \in \mathbb{N} \quad x \in \left(\bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k} \right),$$

and, consequently,

$$\left(\left\{ n \in \mathbb{N}^k \mid (n_1, \ldots, n_k) \leq (m_1, \ldots, m_k) \text{ and } x \in \bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k} \right\} \right)_{l \in \mathbb{N}}$$

is a decreasing sequence of nonempty subsets of $$\mathbb{N}^k$$, each of which belongs to the collection $$\mathcal{A}_{d^*}$$, where

$$A := \left\{ (n \in \mathbb{N}^k) \mid n_p = q \right\} \mid p, q \in \mathbb{N} \}.$$

Now $$A$$ is semicompact, as is easily seen, and $$\mathcal{A}_{d^*}$$ is semicompact as well, because $$A_{d^*} = A_{d^*} \cap A$$. The sequence $$(*)$$ therefore has a nonempty intersection, i.e. there exists an $$n \in \mathbb{N}^k$$ such that

$$\forall k \in \mathbb{N} \quad x \in \bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k},$$

and therefore such that

$$x \in \bigcap_{k \in \mathbb{N}} A_{n_1, \ldots, n_k}.$$

So $$x \in A$$, and the inclusion has been proved.

Now let $$\mu$$ be a probability on $$\mathcal{E}$$ and let $$a \in \mathbb{R}$$. Suppose that

$$(1) \quad \mu^*(A) \geq a,$$

where $$\mu^*$$ is the outer measure corresponding to $$\mu$$. Then, as will be
demonstrated, for every \(i \in \mathbb{N} \) there exists an \(m \in \mathbb{N}^N \) such that for every \(k \in \mathbb{N} \)

\[
\mu^*(\bigcup_{k \in \mathbb{N}} \{ n \in \mathbb{N}^N \mid n \leq (m_1, \ldots, m_k) \}) = \frac{1}{k},
\]

so

\[
(2) \quad \forall i \in \mathbb{N} \exists m_i \in \mathbb{N}^N \forall \epsilon \in \mathbb{N} \left(\mu^*(m_{i,1}, \ldots, m_{i,k}) > \alpha - \frac{1}{k} \right).
\]

The existence of such an \(m \) for every \(i \) follows, by induction on \(i \), from the continuity of \(\mu^* \) on increasing sequences of sets, and from the relations

\[
\bigcup_{k \in \mathbb{N}} \{ n \in \mathbb{N}^N \mid n \leq (m_1, \ldots, m_{k-1}) \leq (m_1, \ldots, m_k) \} = \\
\lim_{\substack{m_k \to \infty \\text{in} \, \mathbb{N} \vdash \mathbb{N}^N}} \bigcup_{k \in \mathbb{N}} \{ n \in \mathbb{N}^N \mid n \leq (m_1, \ldots, m_k) \}.
\]

Statement (2) is equivalent to

\[
(2') \quad \mu \leq \bigcap_{i \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{\epsilon \in \mathbb{N}} \{ n \in \mathbb{N}^N \mid \forall m_{i,1}, \ldots, m_{i,k} \in \mathbb{N}^N \} \}
\]

For each \(m \in \mathbb{N}^N \), the sequence \((m_{i,1}, \ldots, m_{i,k})_{i \in \mathbb{N}} \) is decreasing and therefore

\[
\mu(m_{i,1}, \ldots, m_{i,k}) = \lim_{\substack{k \to \infty \\text{in} \, \mathbb{N} \vdash \mathbb{N}^N}} \mu(m_{i,1}, \ldots, m_{i,k}).
\]

Together with (2) this implies

\[
\forall i \in \mathbb{N} \exists m_i \in \mathbb{N}^N \left(\bigcup_{k \in \mathbb{N}} \{ n \in \mathbb{N}^N \mid n \leq (m_{i,1}, \ldots, m_{i,k}) \} > \alpha - \frac{1}{k} \right),
\]

so

\[
\sup_{m_i \in \mathbb{N}^N} \mu(m_{i,1}, \ldots, m_{i,k}) > \alpha .
\]

As \(A = \bigcap_{i \in \mathbb{N}} m_{i,1}, \ldots, m_{i,k} \) for every \(m \in \mathbb{N}^N \), we can conclude
(3) \[\mu_+(A) = \sup_{m \in \mathbb{N}} \mu(\bigcap_{i \in \mathbb{N}} B_i \cap \cdots \cap B_{i_m}) \geq 0, \]

where \(\mu_+ \) is the inner measure corresponding to \(\mu \).

Now (3) is easily seen to imply (1). So, for every \(\nu \in \overline{E} \) and \(a \in \mathbb{R} \), the statements (1), (2), (2') and (3) are equivalent. From these equivalences we shall now derive the proofs for the Propositions 4.6, 4.8, and 5.2.

i) Taking \(a := \nu^+(A) \) in the equivalent statements (1) and (3), we get \(\nu_+(A) \geq \nu^+(A) \). So \(A \) belongs to \(\overline{E} \). As \(a \) is arbitrary, this implies that \(A \) is universally measurable. The arbitrariness of \(a \), in turn, implies that \(S(E) = \overline{U}(E) \). Applying this inclusion to the space \((E, U(E))\) instead of \((E, E)\) we get \(U(E) \subseteq \overline{U}(E) \), so \(S(E) = \overline{U}(E) \). Thus the proof of Proposition 4.6 is complete. Note that the existence of a collection \(C \), as mentioned in Proposition 5.2, does not restrict the space \((E, E)\), since we always have \(E \subseteq \overline{E} \subseteq S(E) \).

ii) The equivalence of (1) and (2') together with the universal measurability of \(A \) implies that the set \(\{ \nu \in \overline{E} \mid \nu(A) \geq a \} \) equals the right-hand side of (2'), which is a Souslin subset of \(\overline{E} \). From the arbitrariness of \(a \) we conclude that

\[
\{ \nu \in \overline{E} \mid \nu(A) \geq b \} = \bigcup_{i \in \mathbb{N}} \{ \nu \in \overline{E} \mid \nu(A) \geq b + \frac{i}{2^i} \} \subseteq S(\overline{E})
\]

for every \(b \in \mathbb{R} \). So \(\nu = \nu(A) \) is a Souslin function, thus proving Proposition 4.8.

iii) To prove Proposition 5.2 we take \(a := \nu^+(A) \) once more. It then follows from the equivalence of (1) and (3) that

\[
\nu(A) = \sup_{m \in \mathbb{N}} \nu(\bigcap_{i \in \mathbb{N}} B_i \cap \cdots \cap B_{i_m}).
\]

Now \(C \) is a subclass of \(E \) such that \(E \subseteq S(C) \), and hence, such that \(A \subseteq S(E) \subseteq SS(C) = S(C) \). The sets \(A_{i_1, \ldots, i_m} \) may therefore be supposed to belong to \(C \), and the sets \(\bigcap_{i \in \mathbb{N}} B_{i_1} \cap \cdots \cap B_{i_m} \) can be assumed to belong to \(C \). Since \(C_{d5} = C_{sd5} = C_{s5} \), the equality appearing in the proposition has been proved for Souslin sets \(E \) and, consequently, for measurable sets \(A \). For universally measurable sets \(A \) the equality follows from this and the more definition of universal measurability. \(\square \)
DEFINITION. A positive function \(\nu \) defined on a collection \(A \) of sets is called \(\sigma \)-additive when, for each finite (countable) subclass \(A_0 \) of \(A \) consisting of pairwise disjoint sets, and such that \(\bigcup A_0 \subseteq A \), the equality \(\nu \left(\bigcup A_0 \right) = \sum_{A \in A_0} \nu(A) \) holds.

When \(\nu \) is additive then obviously \(\nu(\emptyset) = 0 \).

PROPOSITION 5.3. Let \(A \) be a semicompact algebra of subsets of a set. Then every positive additive function on \(A \) is \(\sigma \)-additive.

PROOF. Let \(\{ A_n \mid n \in \mathbb{N} \} \) be a countable collection of pairwise disjoint members of \(A \) such that \(\bigcup_{n \in \mathbb{N}} A_n \subseteq A \). Then the collection \(\{ \bigcup_{m=n}^{\infty} A_m \mid m \in \mathbb{N} \} \) has empty intersection. As a subcollection of \(A \) the collection is semicompact, and consequently \(\bigcup_{m=n}^{\infty} A_m = \emptyset \) for some \(m \in \mathbb{N} \), which in turn implies that only finitely many members of \(\{ A_n \mid n \in \mathbb{N} \} \) are nonempty. The foregoing implies that additivity and \(\sigma \)-additivity are equivalent for positive functions defined on \(A \).

Next we introduce the auxiliary space \(\mathcal{W} \), the so-called Cantor space. The role played by \(\mathcal{W} \) strongly resembles the role of the space \(\mathbb{R} \) in many measure-theoretic arguments. In fact, \(\mathcal{W} \) and \(\mathbb{R} \) can be shown to be isomorphic as measurable spaces ([Berstekas & Shreve] Proposition 7.16). The space \(\mathcal{W} \) however is better suited to our needs.

DEFINITION. The measurable space \(\mathcal{W} \) is the product space \(\prod_{n \in \mathbb{N}} (D_n, \mathcal{D}_n) \), where, for each \(n \in \mathbb{N} \), \(D_n := \{ 0, 1 \} \) and \(\mathcal{D}_n \) is the \(\sigma \)-algebra consisting of all (four) subsets of \(D_n \).

Note that for any countable set \(I \) the spaces \(\mathcal{W}^I \) and \(\mathcal{W} \) are isomorphic.

An another useful property of \(\mathcal{W} \) we have:

PROPOSITION 5.4. The \(\sigma \)-algebra of \(\mathcal{W} \) is generated by a countable semicompact algebra.

PROOF. Let \(C := \{ (x \in \mathcal{W} \mid x_i = j) \mid i \in \mathbb{N}, j = 0, 1 \} \). Then \(C \) is generating, countable and semicompact. By Proposition 5.1 the same holds for \(C_{\mathcal{W}} \). As \(C \) is closed under complementation, the collection \(C_{\mathcal{W}} \) is an algebra.
§ 6. Measurability of Integrals

A well-known theorem in measure theory says that the integral
\[\int f(x, y) \mu(dy) \] of a measurable function of two variables is a measurable function of \(x \). In this section we shall prove that this integral depends measurably on \(\mu \) as well, and that similar results are valid for universally measurable functions and Souslin functions. Before proving these measurability properties we introduce a generalization of the integral, which will turn out to be convenient later on.

A universally measurable function \(f \) defined on a measurable space \(X \) can be written in the form \(f^+ - f^- \), where \(f^+ \) and \(f^- \) are the positive universally measurable functions on \(X \) defined by
\[
f^+(x) = \max \{ f(x), 0 \} \quad \text{and} \quad f^-(x) = \max \{ -f(x), 0 \} .
\]

When \(\mu \) is a probability on \(X \) then \(f \) is called quasi-integrable with respect to \(\mu \) when at least one of the integrals \(\int f^+ d\mu \) and \(\int f^- d\mu \) is finite. In this case one defines
\[
\int f d\mu := \int f^+ d\mu - \int f^- d\mu ,
\]

As is easily seen, a universally measurable function defined on a measurable space is quasi-integrable with respect to every probability on that space only if it is bounded from above or from below. In order not to be forced to consider bounded functions only or to demand quasi-integrability in advance every time, we generalize the integral concept such as to be applicable even to functions that are not quasi-integrable.

Definition. For a universally measurable function \(f \) and a probability \(\mu \) on a measurable space we define \(\int f d\mu \) to be equal to \(\int f d\mu \) if \(f \) is quasi-integrable with respect to \(\mu \) and equal to \(-\infty \) in the other case.

Using the convention \(-\infty = -\infty \) and \(+\infty = +\infty \) (see Preliminaries 14) we conclude that \(\int f d\mu \) depends on \(f \) in an additive and positively homogeneous manner:
\[
\int (f + g) d\mu = \int f d\mu + \int g d\mu \quad \text{and} \quad \int λf d\mu = λ \int f d\mu \quad \text{for} \ λ > 0 .
\]
in particular we have
\[\int f \, du = \int f^+ \, du - \int f^- \, du = \int f^+ \, du - \int f^- \, du . \]

in general however, \(\int -f \, du \) differs from \(-\int f \, du \). Also, Fubini's theorem cannot be generalized.

We now turn to the measurability properties of the integral defined above.

Proposition 6.1. Let \(f \) be a universally measurable (or measurable, or Solslin) function on a measurable space \(X \). Then the function \(u \rightarrow \int f \, du \) on \(\hat{\mathbb{R}} \)

is universally measurable (or measurable, or Solslin, respectively).

Proof. We prove the statement on Solslin functions. We first consider the case that \(f \) is positive. Then \(f \) is the limit of the increasing sequence
\[\left(\int 2^{-m} \right) \left(\sum_{m=1}^{\infty} 1 \right) (f \circ \hat{n}) \text{ for } n \in \mathbb{N} \]

of positive functions, so
\[\int f \, du = \lim_{n \to \infty} \int 2^{-m} \sum_{m=1}^{\infty} (f \circ \hat{n}) \text{ for each } u \in \hat{\mathbb{R}} . \]

For each \(m, n \in \mathbb{N} \) the set \(\{ f \circ \hat{n} \} \) is a Solslin subset of \(\mathbb{R} \), which implies by Proposition 4.8 that \(\{ f \circ \hat{n} \} \) is a Solslin function of \(u \). Applying Proposition 4.7 we conclude that \(\int f \, du \) also is a Solslin function of \(u \).

As any bounded function differs only a constant from a positive one this result also holds for bounded Solslin functions \(f \).

Now let \(f \) be an arbitrary Solslin function, and for each \(m, n \in \mathbb{N} \) let the function \(f_m^n \) be defined on \(\mathbb{R} \) by
\[f_m^n(x) := \min \{ n, \max \{ -m, f(x) \} \} . \]

Note that \(f_m^n \) is the function \(f \) truncated at the values \(+n \) and \(-m \). For each \(m, n \in \mathbb{N} \), \(f_m^n \) is a bounded Solslin function and
\[\int \int f_m^n \, du = \lim_{n \to \infty} \lim_{m \to \infty} \int f_m^n \, du . \]
It now follows from Proposition 4.7 that \(\int f \, d\mu \) is a Souslin function of \(\mu \).

The statement on (universally) measurable functions \(f \) can be proved in a similar way: instead of Proposition 4.8 use the fact that \(u(A) \) depends (universally) measurable on \(\nu \) for every (universally) measurable set \(A \), i.e. Proposition 3.6 and the definition of \(\overline{E} \).

Proposition 6.2. Let \(E \) and \(F \) be measurable spaces and \(f \) a universally measurable (or measurable, or Souslin) function on \(E \times F \). Then the functions \(y \mapsto f(x,y) \) (\(x \in E \)) on \(F \) and the function \((x,\nu) \mapsto \int f(x,y)\nu(dy) \) on \(E \times \overline{F} \) are universally measurable (or measurable, or Souslin, respectively).

Proof. We prove the statement on Souslin functions; the other cases can be treated in a similar way.

Let \(x \in E \). Then the mapping \(y \mapsto (x,y) \) of \(F \) into \(E \times F \) is measurable, because its coordinates \(y \mapsto x \) and \(y \mapsto y \) are measurable. Now \(y \mapsto f(x,y) \) is the composition of this measurable mapping and the Souslin function \(f \) and therefore it is a Souslin function itself.

For every \(x \in E \), \(\nu \in \overline{F} \) we have

\[
\int f^+(x,y)\nu(dy) = \int \int f^+(x',y)\delta_x(dy)\nu(dy) = \int f^+(\delta_x \times \nu)
\]

and similarly for \(f^- \). Consequently \(\int f(x,y)\nu(dy) \) equals \(\int f(\delta_x \times \nu) \), which is a Souslin function of \(\delta_x \times \nu \) by Proposition 6.1. The result now follows from the fact that \(\delta_x \times \nu \) depends measurable on \((x,\nu) \) (see the examples 1 and 5 following Proposition 2.2), and that the composition of a measurable mapping and a Souslin function is a Souslin function.
CHAPTER II
ANALYTIC SPACES

We have now arrived at the main topic of this monograph: a measure-theoretic treatment of analytic spaces. The importance of analytic topological spaces (for a definition see [Hoffmann-Jørgensen, Ch. III § 1]) in dynamic programming is due to certain properties of the σ-algebras generated by their topologies. In our measure-theoretic approach we have taken these properties as a starting point, and, in fact, we have chosen one of them as the defining property of the class of measurable spaces to be studied. This class, therefore, is an extension of the class of analytic topological spaces as far as the measure-theoretic structure is concerned.

The facts on analytic spaces collected in the first section of this chapter should give the reader a good impression of such spaces. But, since we have only kept in mind the applications of chapter III, the treatment of the subject can only be considered complete in connection with these applications. In the second section, the one on separating classes, countably generated analytic spaces are considered, and their relation to topological analytic spaces is made clear. In the third and final section of this chapter probabilities on analytic spaces are treated, and, in particular, sets of those probabilities that will play a role in the applications.

§ 7. Analytic spaces

DEFINITION. A measurable space \mathcal{E} is called analytic if for every measurable space \mathcal{E} and every Souslin subset S of $\mathbb{R} \times \mathcal{E}$:

i) The projection $S_{\mathbb{R}}$ of S on \mathbb{R} is a Souslin subset of \mathbb{R},

ii) S contains the graph of a universally measurable mapping of the subspace $S_{\mathbb{R}}$ of \mathbb{R} into \mathcal{E}.

The reader should note that, in the above definition, it is not the graph of the mapping that is supposed to be universally measurable but the mapping itself.

A σ-algebra \mathcal{C} of subsets of a set \mathcal{E} is called analytic, when the space $(\mathcal{E}, \mathcal{C})$ is analytic.
The usefulness of analytic spaces for dynamic programming is mainly due to the property expressed in the following proposition, as will become evident in Chapter III.

PROPOSITION 7.1 (Exact selection theorem). Let E be a measurable space, F an analytic space, S a Souslin subspace of $E \times F$ every section $S_x := \{ y \in F \mid (x, y) \in S \}$ of which is nonempty, and f a Souslin function on S. Further let $g : E \rightarrow \mathbb{R}$ be defined by $g(x) = \sup_{y \in S_x} f(x, y)$ and let

$$T := \{ x \in E \mid \exists y \in S_x \ g(x) = f(x, y) \}.$$

Then g is a Souslin function and T is universally measurable.

Moreover, for every universally measurable function h on S such that

- $g(x) \leq f^* - f(x),$
- $g(x) = f(x)$ else,

a universally measurable mapping $\nu : E \rightarrow F$ exists the graph of which is contained in S and such that for each $x \in E$

$$f(x, \nu(x)) = g(x) \leq f^* \quad x \in T,$$

$$f(x, \nu(x)) > h(x) \quad \text{else.}$$

PROOF. Let E and F be the σ-algebras of E and F, respectively. For every $a \in \mathbb{R}$ the set $\{ x \in E \mid g(x) > a \}$ is the projection on E of the Souslin subset $\{ (x, y) \in S \mid f(x, y) > a \}$ of $E \times F$, and therefore it is a Souslin subset of E, since F is analytic. This implies that g is a Souslin function.

Next, let

$$A := \{(x, y) \in S \mid f(x, y) = g(x)\}$$

and

$$B := \{(x, y) \in S \mid f(x, y) > h(x)\}.$$

Then

$$A = S \cap \bigcap_{F \in \mathbb{Q}} \bigcup \left((\{x \} \times F) \cup \{(g(x) \times F)\} \right).$$

and
\[B = S \cap \left[\bigcup_{r \in Q} \left(\{r \times f\} \cap \{(h \times r) \times F\} \right) \right], \]

where \(Q \) is the set of rational numbers. Now, for each \(r \in Q \) we have

\[\{r \times f\} \subset S(E \times F) = S(U(E) \times F), \]

\[\{g \times r\} \times F \subset S(U(E) \times F), \]

and similarly for \(\{h \times r\} \times F \). Consequently, \(A \) and \(B \) belong to \(S(U(E) \times F) \).

We now consider the product space \((E, U(E)) \times (F, F) \). From the analyticity of \(F \) we conclude that the projection \(A_E \) of \(A \) on \(E \) is universally measurable with respect to \(U(E) \) and that there exists a mapping \(\alpha \) of \(A_E \) into \(F \) that is universally measurable with respect to \(U(E) \). \(\Lambda_E \) and whose graph is contained in \(A \). Similarly, the projection \(B_E \) of \(B \) on \(E \) is universally measurable with respect to \(U(E) \) and there exists a mapping \(\beta \) of \(B_E \) into \(F \) that is universally measurable with respect to \(U(E) \). \(\Lambda_E \) and whose graph is contained in \(B \). Moreover, it follows from the definitions of \(A \) and \(B \) that \(\Lambda_E \cup B_E = \Lambda \).

Now \(\Lambda = \Lambda_E \), so \(\Lambda \) is universally measurable with respect to \(U(E) \) and therefore with respect to \(F \) by Proposition 3.2.

Finally, the mapping \(\varphi : E \times F \) defined by

\[\varphi(x) = \begin{cases} \alpha(x) & \text{if } x \in \Lambda_E \\ \beta(x) & \text{else} \end{cases} \]

is easily seen to have the desired properties.

For \(f \) a Borel function defined on \(E \times F \) taking the values 0 and 1 only, the exact selection theorem reduces to the definition of analyticity of \(F \). Consequently, the validity of the exact selection theorem characterizes analytic spaces.

We shall show that the class of analytic spaces is closed under the constructions for measurable spaces most commonly used and that it therefore contains many of the measurable spaces encountered in practice. To begin with, we shall prove that the space \(\mathcal{N} \), introduced in section 3, is analytic.

Proposition 7.1. The space \(\mathcal{N} \) is analytic.
PROOF. Let E be a measurable space and S a Souslin subset of $\mathbb{R} \times \mathbb{R}$. For each $k \in \mathbb{N}$ let the partition P_k of \mathbb{R} be defined by

$$
P_k := \{(y \in \mathbb{R} \mid y_i = n_i \ (i = 1, \ldots, k)) \mid n \in \{0, 1\}^k\}
$$

and let $P := \bigcup_{k \in \mathbb{N}} P_k$. Then, for each $k \in \mathbb{N}$ and for each $P \in P_k$, P^c is the union of $2^k - 1$ members of P_k. So $P \in P_k \subseteq S(P)$. Since, moreover, the σ-algebra \mathcal{D} of \mathbb{R} is generated by P, we have $\mathcal{D} \subseteq S(P)$ as a consequence of Proposition 4.1. When E is the σ-algebra of \mathbb{R}, then, by Proposition 4.5, $E \in S(E \times P)$ and, therefore, $S(E \times P) \subseteq S(E \times P)$. Consequently, by the definition of S the set S can be written as

$$
S = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \left(A_{n_1, \ldots, n_k} \times B_{n_1, \ldots, n_k} \right),
$$

where the A_i's are measurable subsets of E and the B_i's belong to P.

For each n and k the set B_{n_1, \ldots, n_k} is contained in a member of P_k or equal to a finite union of members of P_k; in any case B_{n_1, \ldots, n_k} can be written as a countable union, say $\bigcup_{e \in \mathbb{N}} B_{e(n_1, \ldots, n_k)}$, of members of P each of which is contained in some member of P_k. Hence we have

$$
S = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \left(A_{n_1, \ldots, n_k} \times \bigcup_{e \in \mathbb{N}} B_{e(n_1, \ldots, n_k)} \right).
$$

From this we deduce:

$$
S = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \left(A_{n_1, \ldots, n_k} \times \bigcup_{e \in \mathbb{N}} \left(B_{e(n_1, \ldots, n_k)} \right) \right) = \bigcup_{n \in \mathbb{N}} \left(\bigcap_{k \in \mathbb{N}} \left(A_{n_1, \ldots, n_k} \times B_{e(n_1, \ldots, n_k)} \right) \right) = \bigcup_{n \in \mathbb{N}} \left(\bigcap_{k \in \mathbb{N}} \left(A_{a(n_1), \ldots, a(n_k)} \times B_{a(n_1), \ldots, a(n_k)} \right) \right),
$$

where $n = (a(n), b(n))$ is some surjection of \mathbb{N} onto $\mathbb{N} \times \mathbb{N}$. Hence

$$
S = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \left(A_{n_1, \ldots, n_k} \times B_{n_1, \ldots, n_k} \right),
$$

where, for each n and k, A_{n_1, \ldots, n_k} is a measurable subset of E, and B_{n_1, \ldots, n_k} is a member of P that is contained in some member of P_k. This
Implies that for each \(n \in \mathbb{N} \), \(\cap _{\ell=1}^{k} n_{1}^{\prime}, \ldots, n_{k}^{\prime} \neq \emptyset \) contains at most one point of \(D \).

For each \(n \) and \(k \) we now define

\[
\begin{align*}
A_{n_{1}, \ldots, n_{k}}^{k} & = \begin{cases} \\
\bigcap_{\ell=1}^{k} n_{1}^{\prime}, \ldots, n_{k}^{\prime} & \text{if } \cap _{\ell=1}^{k} n_{1}^{\prime}, \ldots, n_{k}^{\prime} \neq \emptyset, \\
\emptyset & \text{else}.
\end{cases}
\end{align*}
\]

Then

\[
S = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \left(A_{n_{1}, \ldots, n_{k}}^{k} \times B_{n_{1}, \ldots, n_{k}}^{k} \right).
\]

Moreover, as \(P \) is semicompact, for each \(n \in \mathbb{N} \) we have the implications:

\[
\bigcap_{k \in \mathbb{N}} A_{n_{1}, \ldots, n_{k}}^{k} \neq \emptyset \Rightarrow \bigvee_{k \in \mathbb{N}} A_{n_{1}, \ldots, n_{k}}^{k} \neq \emptyset.
\]

\[
\bigvee_{k \in \mathbb{N}} \bigcap_{\ell=1}^{k} n_{1}^{\prime}, \ldots, n_{k}^{\prime} \neq \emptyset \Rightarrow \bigcap_{k \in \mathbb{N}} B_{n_{1}, \ldots, n_{k}}^{k} \neq \emptyset.
\]

We now show that the projection \(S_{E} \) of \(S \) on \(E \) is a Souslin subset of \(E \).

Let \(x \in S_{E} \). Then there is some \(y \in D \) such that \((x, y) \in S \) and hence

\[
x \in \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} A_{n_{1}, \ldots, n_{k}}^{k}.
\]

On the other hand, when \(x \) belongs to the last set, then there exists \(n \in \mathbb{N} \) such that \(x \in \bigcap_{k \in \mathbb{N}} A_{n_{1}, \ldots, n_{k}}^{k} \), which implies \(\bigcap_{k \in \mathbb{N}} B_{n_{1}, \ldots, n_{k}}^{k} \neq \emptyset \), and hence, the existence of \(y \in D \) with \(y \in \bigcap_{k \in \mathbb{N}} B_{n_{1}, \ldots, n_{k}}^{k} \). Then

\[
(x, y) \in \bigcap_{k \in \mathbb{N}} (A_{n_{1}, \ldots, n_{k}}^{k} \times B_{n_{1}, \ldots, n_{k}}^{k}) \subset S,
\]

so the point \(x \) belongs to \(S_{E} \). The foregoing implies that \(S_{E} \) equals

\[
\bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} A_{n_{1}, \ldots, n_{k}}^{k}
\]

and, consequently, \(S_{E} \) is a Souslin subset of \(E \).

Next we show that \(S \) contains the graph of a universally measurable mapping \(\varphi : S_{E} \to D \). For each \(n \in \mathbb{N} \) and \(k \in \mathbb{N} \) we define

\[
A_{n_{1}, \ldots, n_{k}}^{k} := \left(\bigcup_{m \in \mathbb{N}} \bigcap_{t \in \mathbb{N}} A_{n_{1}, \ldots, n_{k}, n_{1}, \ldots, n_{t}}^{t} \right) \cap A_{n_{1}, \ldots, n_{k}}^{k}.
\]
Then

\[S_E \subseteq \bigcup_{i \in \mathbb{N}} A_i^+ \quad \text{and} \quad \bigcap_{i \in \mathbb{N}} A_i^+ = \bigcup_{i \in \mathbb{N}} A_i^-,
\]

for each \(a \in \mathbb{N}^+ \) and \(k \in \mathbb{N} \). Now let \(x \in S_E \) and let \(p \in \mathbb{N}^+ \) be such that, for each \(k \in \mathbb{N} \), \(p_k \) is the smallest positive integer for which

\[x \in A_i^+ \quad \text{and} \quad A_i^+, \ldots, A_k^+ \cap P_{i} \cdots P_k \neq \emptyset. \]

Then

\[\bigcap_{k \in \mathbb{N}} A_i^+, \ldots, P_k \neq \emptyset, \]

and hence \(a_{k \in \mathbb{N}} b_{j_1}, \ldots, p_j \neq \emptyset \). This implies that the last intersection contains precisely one point, say \(q(x) \), of \(D \). Moreover, we have

\[(x, q(x)) \in \bigcap_{k \in \mathbb{N}} A_i^+, \ldots, P_k \times B_{j_1}, \ldots, P_k \subseteq S. \]

The graph of the mapping \(\phi \colon E \to D \) defined above is therefore contained in \(S \).

To prove the universal measurability of \(\phi \), let \(k \in \mathbb{N} \) and \(B \subseteq P_k \). Let \(N \) be the set of those \(a \in \mathbb{N}^+ \) for which \(E^+_{j_1}, \ldots, n_k \subseteq B \). Then the following four statements are equivalent:

\[\phi(x) \in B, \quad B_j, \ldots, B_k \subseteq B, \quad (P_{j_1}, \ldots, P_k) \in N, \]

\[x \in \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \left(A_i^+, \ldots, a_k^+ \setminus B_{j_1}, \ldots, P_k \right). \]

As each \(A_i^+ \) is a Souslin subset of \(R \) and \(N \) is countable, \(\phi^{-1}B \) belongs to the \(\sigma \)-algebra generated by the Souslin subsets of \(S_E \) and, hence, is universally measurable. Now the result follows from \(D = c(\bigcup_{k \in \mathbb{N}} P_k) \). \(\square \)

The analyticity of a large class of measurable spaces will be deduced from the analyticity of \(D \). Material in these deductions is Proposition 7.5, where mappings of analytic spaces into \(D \) are considered. First we give some preparatory results on mappings in general.
Proposition 7.3. Let E and F be measurable spaces, let F be countably generated, and let $\varphi: E \times F$ be measurable. Then the graph of φ is a measurable subset of $E \times F$.

Proof. Let A be a countable collection of measurable subsets of F that separates the points of F. Then for every $(x,y) \in E \times F$ we have:

$$ (x,y) \in \text{graph } \varphi \iff y \notin \varphi(x) \iff $$

$$ \exists A \in \mathcal{A} \{ (\varphi(x) \cap A \neq \emptyset) \lor (\varphi(x) \notin A \land C \in A) \} \iff $$

$$ (x,y) \in \bigcup_{A \in \mathcal{A}} \left((\varphi^{-1}A \times A)^c \cup (\varphi^{-1}A) \times A \right). $$

So the graph of φ is the complement of a countable union of measurable subsets of $E \times F$, and therefore is measurable itself.

Definition. Let (E,F) and (F,G) be measurable spaces and let $\varphi: E \to F$. A right inverse of φ is a mapping $\psi: F \to E$ such that $\varphi \circ \psi$ is the identity on E. The mapping ψ is called strictly measurable if $E = \varphi^{-1}F$. The mapping ψ is called an isomorphic embedding when it is strictly measurable and injective.

Note that every mapping has a right inverse, but that this inverse is unique only when the mapping is injective.

Proposition 7.4.

1. Let (E,F) and (F,G) be measurable spaces and let $\varphi: E \to F$ be strictly measurable. Then $S(E) = \psi^{-1}S(F)$ and every right inverse of φ is measurable with respect to $F(\varphi E)$.

2. Let E be a countably generated measurable space. Then there exists a strictly measurable mapping $\varphi: E \to D$.

Proof.

1. $S(E) = S(\varphi^{-1}F) = \varphi^{-1}S(F)$ because of Proposition 4.3. Let φ be a right inverse of φ. For every measurable subset A of E there exists a measurable subset B of F such that $A = \varphi^{-1}B$ and, hence, such that
\[\varphi^{-1}(\alpha \cap B) = (\varphi \circ \psi)^{-1} \beta = B \cap (\varphi \circ \psi) \].

Consequently, \(\varphi \) is measurable with respect to \(F(\varphi \circ \psi) \).

(1) Let \(\{ C_n \mid n \in \mathbb{N} \} \) be a countable collection generating the \(\sigma \)-algebra \(\mathcal{E} \) of \(E \). Moreover, let \(\mathcal{D} \) be the \(\sigma \)-algebra of \(\mathcal{M} \), and for each \(n \in \mathbb{N} \) let \(D_n := \{ y \in \mathcal{M} \mid y \cap C_n = 1 \} \). Define \(\varphi : E \to \mathcal{M} \) by \(\varphi(x)_n := 1_{C_n}(x) \) \((n \in \mathbb{N}, x \in E)\). Then for every \(n \in \mathbb{N} \) we have \(C_n = \varphi^{-1}D_n \) and consequently \(\varphi(C_n) = \varphi^{-1}(D_n) \cap \mathbb{N} \) or equivalently \(E = \varphi^{-1}D_n \). So \(\varphi \) is strictly measurable.

The characterization of analytic spaces given in the following proposition is a useful alternative to the defining one. It will be used frequently in the rest of this chapter.

Proposition 7.5. A measurable space \(F \) is analytic iff for every measurable mapping \(\varphi : F \to \mathcal{M} \) the range of \(\varphi \) is a Souslin subset of \(\mathcal{M} \) and \(\varphi \) has a universally measurable right inverse.

Proof. Let \(F \) be analytic and \(\varphi : F \to \mathcal{M} \) measurable. As \(\mathcal{M} \) is countably separated, the graph of \(\varphi \) is a measurable subset of \(F \times \mathcal{M} \) by Proposition 7.3 and, hence, a Souslin subset of \(F \times \mathcal{M} \). The range of \(\varphi \) is the projection on \(\mathcal{M} \) of the graph of \(\varphi \) and therefore is a Souslin subset of \(\mathcal{M} \). Moreover, the graph of \(\varphi \) contains the graph of a universally measurable mapping of \(\mathcal{M} \) into \(F \), which obviously is a right inverse of \(\varphi \).

Conversely, let \((F, F) \) be a measurable space having the property stated in the proposition. We shall show that \(F \) obeys the definition of analyticity. To this end let \((E, E) \) be a measurable space, and let \(S \) be a Souslin subset of \(E \times F \). Then by Propositions 4.2 and 4.3 we have \(S \subseteq S(E \times F) \subseteq S(E \times F) = S(E \times F) \), i.e. \(S \) is the kernel of a Souslin scheme on \(E \times F \). An such Souslin scheme involves only countably many sets, we even have \(S \subseteq S(E \times C) \) for some countable subalgebra \(C \) of \(F \).

By Proposition 7.4 a mapping \(\psi : F \times \mathcal{M} \) exists that is strictly measurable with respect to \(\sigma(C) \), and, therefore, measurable with respect to \(F \). When \(\psi : E \times F \to E \times \mathcal{M} \) is defined by \(\psi(x, y) = (x, \varphi(y)) \), then \(\psi \) is easily seen to be strictly measurable with respect to \(E \times \sigma(C) \). It now follows from Proposition 7.4 that a Souslin subset \(S' \) of \(E \times \mathcal{M} \) exists such that \(S = S' \cap (E \times \mathcal{M}) \). The properties of \(F \) imply that \(\mathcal{M} \) is a Souslin subset of \(\mathcal{M} \). So \(E \times \varphi \) is a Souslin subset of
$E \times D$ and this in turn implies that \mathcal{G} is the intersection of two Souslin subsets of $E \times D$ and, consequently, a Souslin set itself.

From the definition of \mathcal{G} it now follows that the projection $S_\mathcal{G}$ of \mathcal{G} on E equals the projection of \mathcal{G} on E. The latter set, however, is a Souslin subset of E, due to the analyticity of D.

It also follows from the analyticity of D that there exists a universally measurable mapping $\psi: S_\mathcal{G} \to D$ the graph of which is contained in \mathcal{G}. Furthermore, by the properties of F, there exists a universally measurable right inverse δ of ψ. The mapping $\delta = \psi: S_\mathcal{G} \to F$ therefore is universally measurable, and for every $x \in S_\mathcal{G}$ we have

$v(x, (\delta \ast a)x) = (x, (\psi \ast x)x) = (x, xa) \ast \mathcal{G} \circ S' \ast S'$.

Hence,

$\text{graph} (\delta \ast a) \circ \psi^{-1} \circ S' = S$.

The foregoing implies that F satisfies the defining conditions for analyticity.

We are now able to prove the stability properties of the class of analytic spaces announced earlier.

Proposition 7.6. The class of analytic spaces is closed under the formation of

1) measurable images,
2) Souslin subspaces,
3) product spaces.

Proof.

1) Let a measurable space F be the image of an analytic space E under a measurable mapping ϕ. We shall prove that the characterization of analytic spaces given in the preceding proposition applies to F. So, let ϕ be a measurable mapping of F into D. Then $\phi \ast \psi$ is a measurable mapping of the analytic space E into D and, by the preceding proposition, its range is a Souslin subset of D, while it has a universally measurable right inverse χ. As the range of ϕ equals the range of $\phi \ast \psi$ and as $\phi \ast \chi$ is a right inverse of ϕ, the range of ψ is a Souslin subset of D and ϕ has a universally measurable right
inverse. From this and the arbitrariness of \(\varphi \) it follows that \(F \) is analytic.

ii) To prove the statement on Souslin subspaces we use the definition of analyticity. Let \(F \) be a Souslin subspace of an analytic space \(F' \).

Further, let \(E \) be a measurable space and let \(S \) be a Souslin subset of \(E \times F \). Then, by Proposition 4.6, \(S \) is the intersection of \(E \times F \) and some Souslin subset of \(E \times F' \). Now \(E \times F \) itself is a Souslin subset of \(E \times F' \), so \(S \) is a Souslin subset of \(E \times F' \) as well. From the analyticity of \(F' \) we deduce that the projection \(S_\varphi \) of \(S \) on \(F \) is a Souslin subset of \(E \), and that \(S \) contains the graph of a universally measurable mapping of \(S_\varphi \) into \(F' \). The range of this mapping is contained in \(F \) and it can, therefore, be considered as a universally measurable mapping of \(S_\varphi \) into \(F \).

The foregoing implies that \(F \) is analytic.

iii) Let \((F_i, F_1)_{i \in I} \) be a family of analytic spaces and let \(F := \prod_{i \in I} F_i \).

For each measurable mapping \(\varphi: F \to D \) we shall show that the range of \(\varphi \) is a Souslin subset of \(D \) and that \(\varphi \) has a universally measurable right inverse. These facts imply that \(F \) is analytic.

Since the \(\sigma \)-algebra \(\mathcal{D} \) of \(D \) is countably generated, so is the sub-\(\sigma \)-algebra \(\varphi^{-1}\mathcal{D} \) of \(F \). So \(\varphi^{-1}\mathcal{D} \) is contained in a sub-\(\sigma \)-algebra of \(F \) that is generated by countably many rectangles in \(\prod_{i \in I} F_i \). Consequently, there exists a countable subset \(J \) of \(I \) and, for each \(i \in I \), a countably generated sub-\(\sigma \)-algebra \(F_1^i \) of \(F_i \) such that \(\bigvee_{i \in I \setminus J} F_1^i = \{0,F_i\} \) and such that \(\varphi^{-1}\mathcal{D} \subset \prod_{i \in I \setminus J} F_1^i \).

We shall now show that the mapping \(\varphi: F \to D \) can be decomposed into a mapping \(\varphi: F \to D' \) and a mapping \(\chi: \varphi F \to D' \). To this end let, for each \(j \in J \), the mapping \(\varphi_j: F_j \to D_j \) be strictly measurable with respect to \(F_1^j \) (such mappings exist by Proposition 7.4) and let \(\varphi: F \to D' \) be defined by \(\varphi(x)_j := \varphi_j(x_j) \) (\(j \in J \), \(x \in F \)). Now suppose that \(x \) and \(x' \) are points of \(F \) such that \(\varphi(x) = \varphi(x') \). Then for each \(j \in J \) we have \(\varphi_j(x_j) = \varphi_j(x'_j) \), so \(x_j \) and \(x'_j \) are not separated by \(\varphi_j^{-1}\mathcal{D}_j \), hence not by \(F_1^j \). Since \(F_1^j \) is trivial for \(j \notin J \), \(x \) and \(x' \) are not separated by \(\varphi^{-1}\mathcal{D} \) and therefore they are not separated by the smaller class \(\varphi^{-1}\mathcal{D} \) either. As \(\mathcal{D} \) separates the point of \(D \), this implies that \(\varphi(x) = \varphi(x') \).

The arbitrariness of \(x \) and \(x' \) now implies that \(\varphi = \chi \circ \psi \) for some mapping \(\chi: \psi F \to D' \).
Next we show that the range of \(\psi \) is an analytic space and that \(\psi \) has a universally measurable right inverse. Let \(j \in J \). Since \((F_j, F_j^0) \) is analytic and \(\psi_j \) is measurable with respect to \(F_j \), the range of \(\psi_j \) is a Souslin subset, \(S_j \) say, of \(\mathbb{D} \) and \(\psi_j \) has a right inverse, say \(S_j^{-1} \), that is universally measurable with respect to \(F_j \). Moreover, when \(v_j \) is the \(j \)-th coordinate of \(\mathbb{D}^j \), then \(S_j^{-1} v_j \) is a Souslin subset of \(\mathbb{D}^j \) by Proposition 4.3. The foregoing now implies that

\[
\psi F = \prod_{j \in J} S_j = \prod_{j \in J} \prod_{i \in I} (S_j^{-1} v_i),
\]

so \(\psi F \) is a countable intersection of Souslin sets and, therefore, a Souslin set itself. Since \(J \) is countable, the space \(\mathbb{D}^J \) is isomorphic to \(\mathbb{D} \) and therefore it is analytic. Consequently \(\psi F \), being a Souslin subset of \(\mathbb{D}^j \), is analytic by the result ii) proved above.

To construct a universally measurable right inverse \(S : \psi F \to F \) of \(\psi \) we merely choose a point \(a \in F \) and define

\[
[S(y)]_i = \begin{cases}
S_i(y_i) & \text{if } i \in J \\
\ldots & \text{if } i \in I \setminus J
\end{cases} \quad (i \in I, y \in \psi F).
\]

The universal measurability of \(S \) follows from the fact that for each coordinate \(S_i \) of \(\prod_{i \in I} F_i \) we have

\[
S_i = S_i \circ \zeta_i \quad \text{if } i \in J,
\]

and from the universal measurability of the \(S_i \)'s (see remark preceding Proposition 3.4).

Finally, we turn to the mapping \(\chi : \psi F \to \mathbb{D} \). It follows from the definition of \(\psi : F \to \mathbb{D}^j \) that \(\psi \) is strictly measurable with respect to \(\bar{\psi}, \bar{F}_i \). Since we also have

\[
\psi^{-1}(\chi^{-1} D) = (\chi \circ \psi)^{-1} D = \bar{\psi}^{-1} D \subset \mathbb{D}^j,
\]

it follows that \(\chi^{-1} D \) is contained in the \(\sigma \)-algebra of \(\psi F \). So \(\chi \) is measurable. As the domain \(\psi F \) of \(\chi \) has been proved to be analytic, the
range of \(\chi \) is a Souslin subset of \(\mathbb{I} \) and \(\chi \) has a universally measurable right inverse, say \(\gamma \).

Now the range of \(\phi \) equals the range of \(\chi \), and \(\delta - \gamma \) is easily seen to be a universally measurable right inverse of \(\phi \). From the arbitrariness of \(\phi \) it now follows that the space \(\Pi_1 (\mathcal{F}_1, \mathcal{F}_1) \) is analytic.

\[\Box \]

Corollary 7.7. Let \((\mathcal{F}, \mathcal{F}) \) be an analytic space and let \(\mathcal{G} \) be a sub-\(\sigma \)-algebra of \(\mathcal{F} \). Then the space \((\mathcal{F}, \mathcal{G}) \) is analytic as well.

The construction principles mentioned in Proposition 7.6, and the analyticity of \(\mathbb{I} \) enable us to obtain a large variety of analytic spaces. We give an example.

Proposition 7.8. The space \(\mathbb{N} \) is analytic.

Proof. Let \(\psi : \mathbb{I} \to [0,1] \) be defined by

\[
\psi(x) = \sum_{n=1}^{\infty} \frac{x_n}{2^n}.
\]

Then \(\psi \) is a surjection. Moreover, \(\psi \) is measurable, because for each \(n \in \mathbb{N} \) the number \(x_n \) depends measurably on \(x \). So, \([0,1]\) is a measurable image of \(\mathbb{I} \) and, therefore, it is analytic. The same holds for the measurable subspace \((0,1) \) of \([0,1]\) and, consequently, for the space \(\mathbb{N} \), which is the image of \((0,1)\) under the measurable mapping

\[
x = \frac{1}{x} + \frac{1}{x - 1}.
\]

\[\Box \]

When the \(\sigma \)-algebras \(\mathcal{E} \) and \(\mathcal{F} \) of two measurable spaces \((\mathcal{E}, \mathcal{E})\) and \((\mathcal{F}, \mathcal{F})\) are isomorphic, the spaces \((\mathcal{E}, \mathcal{E})\) and \((\mathcal{F}, \mathcal{F})\) themselves are not necessarily isomorphic. In many situations, however, this distinction is immaterial. Note, for instance, that the spaces \((\hat{\mathcal{E}}, \hat{\mathcal{E}})\) and \((\hat{\mathcal{F}}, \hat{\mathcal{F}})\) are isomorphic if the \(\sigma \)-algebras \(\mathcal{E} \) and \(\mathcal{F} \) are isomorphic. It follows from these considerations and the following proposition that it is often possible to consider a countably generated analytic space to be a Souslin subspace of \(\mathbb{I} \).
PROPOSITION 7.9. Let (F,F) be a countably generated analytic space. Then F is isomorphic to the σ-algebra of some Souslin subspace of D.

PROOF. It follows from Proposition 7.4 that there is a strictly measurable mapping $\psi : F \rightarrow D$. Proposition 7.5 implies that the range of ψ is a Souslin subset of D. Hence the result.

If (F,F) is a measurable space, G a sub-σ-algebra of F and μ a probability on G, then μ is not necessarily extendable to a probability on F. When such an extension happens to exist, it need not be unique. For analytic spaces, however, things are not too bad:

PROPOSITION 7.10. Let (F,F) be an analytic space and let G be a countably generated sub-σ-algebra of F. Then there exists a universally measurable mapping $\psi : (F,G) \rightarrow (F,F)$ such that for every probability μ on G the probability $\psi(\mu)$ is an extension of μ to F.

PROOF. By Proposition 7.4 there exists a mapping $\psi : F \rightarrow D$ that is (strictly) measurable with respect to G, and hence, measurable with respect to F. Since (F,F) is analytic, by Proposition 7.5 there is a right inverse χ of ψ that is universally measurable with respect to F.

Now let $\psi : (F,G) \rightarrow (F,F)$ be defined by $\psi(\mu) := \mu \circ \psi^{-1} \circ \chi^{-1}$.

For every $A \in F$ the set $\chi^{-1}(A)$ is a universally measurable subset of the space F. Consequently, the set $\psi^{-1}(\chi^{-1}(A))$ is a universally measurable subset of (F,G) by Proposition 3.4, which in turn implies, by Proposition 3.6, that $\mu(\psi^{-1}(\chi^{-1}(A)))$ depends universally measurably on $\mu \in \mathcal{F}(G)$. So, from the definitions of (F,F) and universal measurability it follows that the mapping ψ is universally measurable.

Finally, we shall show that for every probability μ on G the probability $\psi(\mu)$ is an extension of μ to F. From the strict measurability of ψ it follows that $G = \psi^{-1}D$, where D is the σ-algebra of D. So what we have to prove is that $\psi(\mu)$ and μ coincide on $\psi^{-1}D$. Therefore, let $B \in D$. Then

$$
\psi(\mu)(B) = (\mu \circ \psi^{-1} \circ \chi^{-1})(B) = \mu(\psi^{-1}(\psi \circ \chi^{-1})(B)) = \mu(\psi^{-1}B),
$$

because $\psi = \chi$ is the identity on F. \hfill \Box
The mapping \(\varphi \) in the foregoing proposition is a (nonunique) universally measurable right inverse of the measurable mapping \(\varphi: (\mathcal{F}, \mathcal{F})^c \to (\mathcal{G}, \mathcal{G})^c \) defined by \((\varphi \mu)(G) = \mu(G) \quad (G \in \mathcal{G}) \), i.e. the mapping corresponding to restriction to \(G \) (see example 4 following Proposition 2.2).

The remaining part of this section consists of the proof of Proposition 7.13, which states that analyticity of a space \(\mathbb{F} \) implies analyticity of the space \(\overline{\mathbb{F}} \). We start with two lemmas.

Lemma 7.11. \(\mathbb{F} \) is analytic.

Proof. Let \(A \) be a countable semicompact algebra generating the \(\sigma \)-algebra of \(\mathcal{F} \), let the mapping \(\varphi: \mathcal{F} \to [0,1]^A \) be defined by \((\varphi \mu)_A = \mu(A) \), and let \(M \) be the subspace of \([0,1]^A \) consisting of all additive functions \(\nu: A \to [0,1] \) for which \(\nu(\mathcal{F}) = 1 \).

Since \(A \) is a semicompact algebra, every member of \(M \) is \(\sigma \)-additive by Proposition 5.3, and therefore is uniquely extendable to a probability on \(\sigma(A) \). This, however, implies that \(\varphi \) is injective and that the range of \(\varphi \) equals \(M \). The mapping \(\varphi \) even is an isomorphic embedding because the \(\sigma \)-algebra of \(\mathcal{F} \) is generated by the mappings \(\mu = \mu(A) \quad (A \in A) \), that is, by the mappings \(\varphi = (\varphi \mu)_A \quad (A \in A) \). It is therefore sufficient to prove that \(M \) is analytic.

Now \([0,1]^A \) is analytic, because \([0,1] \) is, and \(M \) is a measurable subset of \([0,1]^A \), as it can be written as a countable intersection of measurable sets, e.g.

\[
\mathcal{N} = \{ \nu \in [0,1]^A \mid \nu(A) + \nu(B) = \nu(A \cup B) \text{ and } \nu(\mathcal{F}) = 1 \},
\]

where the intersection is over the countable set of disjoint pairs \((A,B) \) of members of \(A \). Hence \(M \) is analytic. \(\square \)

Lemma 7.12. Let \(\mathbb{F} \) be a countably generated analytic space. Then \(\overline{\mathbb{F}} \) is analytic.

Proof. By Proposition 7.9 the \(\sigma \)-algebra of \(\mathbb{F} \) is isomorphic to the \(\sigma \)-algebra of some Suslin subspace, \(S \), say, of \(\mathcal{F} \), and, consequently, the spaces \(\mathbb{F} \) and \(\overline{S} \) are isomorphic. It will therefore be sufficient to prove that \(\overline{S} \) is analytic.
To this end let us define the mapping \(\psi : \mathfrak{B} \rightarrow \mathfrak{D} \) by \((\psi \nu)(B) := \nu(B \cap S) \) \((B \in \mathfrak{B})\), where \(\mathfrak{B} \) is the \(\sigma \)-algebra of \(\mathfrak{D} \). When \(\nu, \nu' \in \mathfrak{B} \) are such that \(\nu \psi = \nu' \psi \), then \(\nu \) and \(\nu' \) coincide on the \(\sigma \)-algebra \(\mathfrak{D} \) of \(S \) and, therefore, are identical. So \(\psi \) is injective. Moreover, since the \(\sigma \)-algebras of \(\mathfrak{B} \) and \(\mathfrak{D} \) are generated by the functions \(\mu \mapsto \mu(B \cap S) \) and \(\nu \mapsto \nu(B) \) \((B \in \mathfrak{B})\), respectively, the mapping \(\psi \) is an isomorphic embedding. So \(\mathfrak{B} \) is isomorphic to the range of \(\psi \) and what remains to be proved is the analyticity of this range.

Now let \(\nu \in \mathfrak{B} \). For every \(B \in \mathfrak{B} \) such that \(S \subseteq B \) we have \((\psi \nu)(B) = \nu(B \cap S) = \nu(S) = 1 \), so \((\psi \nu)(B) = 1 \). On the other hand, let \(\nu \in \mathfrak{B} \) be such that \(\nu(S) = 1 \). When we define \(\nu \) on \(\mathfrak{D} \) by \(\psi(A) := \nu(A) \), then \(\nu \) is a probability and \(\psi \nu = \nu \). So the range of \(\psi \) is equal to the subset \(\{ \nu \in \mathfrak{D} \mid \nu(S) = 1 \} \) of \(\mathfrak{D} \). Since this subset can be written as \(\cap \{ \nu \in \mathfrak{D} \mid \nu(S) > 1 - \alpha^{-1} \} \), \(\alpha \in \mathbb{R}^{+} \) and since \(\nu \mapsto \nu(S) \) is a Suslin function on \(\mathfrak{D} \) by Proposition 4.8, the range of \(\psi \) is a Suslin subset of \(\mathfrak{D} \). From the analyticity of \(\mathfrak{D} \) together with Proposition 7.6 we now deduce that the range of \(\psi \) is analytic.

PROPOSITION 7.13. If a measurable space \(\mathcal{F} \) is analytic, then \(\mathcal{F} \) is analytic as well.

PROOF. We shall prove that \(\mathcal{F} \) has the characterizing property of analytic spaces given in Proposition 7.5. Therefore, let \(\varphi : (\mathcal{F}, \mathcal{B}) \rightarrow (\mathfrak{D}, \mathfrak{B}) \) be measurable. Since \(\mathcal{D} \) is countably generated, \(\varphi^{-1} \mathfrak{B} \) is a countably generated sub-\(\sigma \)-algebra of \(\mathcal{F} \). From the definition of \(\mathcal{F} \) it follows that \(\mathcal{F} \) is generated by the collection \(C \) of subsets of \(\mathcal{F}(\mathfrak{B}) \) of the form \(\{ \psi \in \mathcal{F}(\mathfrak{B}) \mid \psi(A) \in \mathfrak{B} \} \), where \(A \in \mathcal{F} \) and where \(\mathfrak{B} \) is a measurable subset of \(\mathcal{B} \). As a consequence, there exists a countable subclass \(\mathcal{C}_0 \) of \(C \) such that \(\varphi^{-1} \mathfrak{B} \subset \sigma(\mathcal{C}_0) \). Hence, by the definition of \(\mathcal{C} \), there exists a countable subclass \(\mathcal{A} \) of \(\mathcal{F} \) such that \(\varphi^{-1} \mathfrak{B} \) is contained in the \(\sigma \)-algebra generated by the functions \(\mu \mapsto \mu(A) \) \((A \in \mathcal{A}) \) on \(\mathcal{F}(\mathfrak{B}) \).

Now let \(\mathcal{B} \) be the sub-\(\sigma \)-algebra of \(\mathcal{F} \) generated by \(\mathcal{A} \). Suppose that \(\mu' \) and \(\mu'' \) are probabilities on \(\mathcal{F} \) that coincide on \(\mathcal{B} \). Then \(\mu \) and \(\mu'' \) coincide on \(\mathcal{B} \) and, therefore, they are not separated by the \(\sigma \)-algebra on \(\mathcal{F}(\mathfrak{B}) \) generated by the functions \(\mu \mapsto \mu(A) \) \((A \in \mathcal{A}) \). As a consequence \(\mu' \) and \(\mu'' \) are not separated by the smaller \(\sigma \)-algebra \(\mathcal{F}(\mathfrak{B}) \) either. So, \(\mu' \) and \(\mu'' \) are not
separated by \mathcal{D} and, therefore, are identical, since \mathcal{D} separates the points of Id.

The foregoing implies that we can write $\varphi = \chi \circ \psi$, where

$\psi: (F,\mathcal{G}) \rightarrow (F,\mathcal{G})$ is the mapping corresponding to restriction to \mathcal{G}, i.e., $\psi(A) := \mathcal{G}(A)$ for all $A \in \mathcal{G}$ and $\mathcal{G} \subset \mathcal{F}$, and where χ maps (F,\mathcal{G}) into (Id,\mathcal{G}). As \mathcal{G} is a sub-σ-algebra of \mathcal{F} and since (F,\mathcal{F}) is analytic, the space (F,\mathcal{G}) is analytic as well by Corollary 7.7. Moreover, \mathcal{G} is countably generated, so by Proposition 7.10 and the remark following it the mapping ψ is surjective and has a universally measurable right inverse.

From the definitions of \mathcal{G} and ψ it follows that $\psi^{-1}\mathcal{G}$ is the σ-algebra on \mathcal{F} that is generated by the functions $\mu = \mu(A)$ ($A \in \mathcal{G}$); it therefore contains the σ-algebra $\mathcal{G}^{-1}\mathcal{D}$. Consequently, we have $\psi^{-1}\chi^{-1}\mathcal{D} = (\chi \circ \psi)^{-1}\mathcal{D} = \psi^{-1}\mathcal{D} \subset \psi^{-1}\mathcal{G}$ and, since ψ is surjective, $\psi^{-1}\mathcal{D} \subset \mathcal{G}$. So χ is measurable.

Due to Lemma 7.12, the space (F,\mathcal{G}) is analytic, because (F,\mathcal{G}) is a countably generated analytic space. Together with the measurability of χ this implies, by Proposition 7.5, that the range of χ is a Souslin subset of Id and that χ has a universally measurable right inverse.

Since ψ is surjective, the range of ψ equals the range of χ and hence is a Souslin subset of Id. Moreover, the composition of the right inverses of χ and ψ mentioned above is a universally measurable right inverse of ψ. \qed

§ 8. Separating classes

We shall now prove the so-called first separation theorem for analytic spaces. From this theorem it follows that the two conditions in the definition of analytic spaces are not independent when countably generated or countably separated spaces are considered. Moreover, with the aid of this theorem it is possible to characterize those analytic spaces whose σ-algebras are generated by an analytic topology.

DEFINITION. Let A and B be collections of sets. Then B is said to separate A, if for every disjoint pair $A_1, A_2 \in A$ there exists a disjoint pair $B_1, B_2 \in B$ such that $A_1 \subset B_1$ and $A_2 \subset B_2$.

This terminology is consistent with the notion of a separating collection of subsets of a set introduced earlier, since such a collection is characterized by the fact that it separates the collection of singletons.
For the proof of the first separation theorem we need:

LEMMA 8.1. Let \((x, E)\) be a measurable space, \(\{s^1_i \mid i \in \mathbb{N}\} \) and \(\{s^2_j \mid j \in \mathbb{N}\}\) countable collections of subsets of \(E\), for each \(i \in \mathbb{N}\), \(s^1_i = \bigcup_{k \in \mathbb{N}} s^1_{i,k}\) and \(s^2_j = \bigcup_{k \in \mathbb{N}} s^2_{j,k}\). Then the pair \((s^1, s^2)\) is not separated by \(E\), then for some \(i, j \in \mathbb{N}\) the pair \((s^1_i, s^2_j)\) is not separated by \(E\) either.

PROOF. We argue by contradiction. Let the pair \((s^1_i, s^2_j)\) be separated by \(E\) for every \(i, j \in \mathbb{N}\). Then for every \(i, j \in \mathbb{N}\) there exists \(M_{ij} \subseteq E\) such that \(s^1_i \subseteq M_{ij}\) and \(s^2_j \subseteq M_{ij}^c\). Consequently, \(s^1_i\) is contained in the set \(\bigcup_{i \in \mathbb{N}} \bigcap_{j \in \mathbb{N}} M_{ij}\) and \(s^2_j\) is contained in the complement of this set. So the pair \((s^1, s^2)\) is separated by \(E\).

PROPOSITION 8.2 (First separation theorem). Let \((x, E)\) be a measurable space. Then \(E\) separates \(S(E)\).

PROOF.

1) We first consider the case that \(E\) equals \(\mathbb{N}\). Let \(\mathcal{D}\) be the \(\sigma\)-algebra of \(\mathbb{N}\) and let \(A\) be a countable semicompact algebra generating \(\mathcal{D}\) (cf. Proposition 4.4). As \(A\) is closed under complementation, by Proposition 4.1 we have \(\sigma(A) \subseteq S(A)\). Moreover, \(\mathcal{D} = \sigma(A)\), so \(S(\mathcal{D}) = S(S(A)) = S(A)\).

Now let \(s^1, s^2 \in S(\mathcal{D})\). Then

\[s^r = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} A^r_{n,1}, \ldots, n_k \quad (r = 1, 2) \]

for certain sets \(A^r_{n,1}, \ldots, n_k\) belonging to \(A\). For \(r = \{1, 2\}\) and for every finite sequence \(n_1, \ldots, n_p\) of positive integers we define

\[s^r_{n_1, \ldots, n_p} = \bigcup_{n \in \mathbb{N}} \left(\bigcap_{k \in \mathbb{N}} A^r_{n,1}, \ldots, n_k \right) \quad \text{for} \quad n \in \mathbb{N}^p \quad \text{and} \quad \forall_{1 \leq p} n_k = n_1. \]

Then

\[s^1 = \bigcup_{i \in \mathbb{N}} s^1_i \quad \text{and} \quad s^2 = \bigcup_{j \in \mathbb{N}} s^2_j \]

Let us suppose that the pair \((s^1, s^2)\) is not separated by \(\mathcal{D}\). It then follows by induction on \(p\), and by use of Lemma 8.1 at each step, that there exist \(n_1, \ldots, n_p \in \mathbb{N}\) such that for each \(p\) the pair
\[\{ \sigma^r_{m_i, \ldots, m_p} \mid r = 1, 2 \} \]

is not separated by \(\mathcal{D} \). As

\[S^r_{\sigma^r_{m_i}, \ldots, m_p} \cap \mathcal{D} = \mathcal{A} \]

for every \(p \) and \(r \), this implies that for every \(p \) the pair

\[\{ \sigma^r_{m_i, \ldots, m_p} \mid r = 1, 2 \} \]

is not disjoint. It now follows from the semicompactness of \(\mathcal{A} \) that the set

\[\left(\bigcap_{k \in \mathbb{N}} \sigma^1 \right) \cap \left(\bigcap_{k \in \mathbb{N}} \sigma^2 \right) \]

is nonempty, and hence, that \(S^1 \) and \(S^2 \) are not disjoint. The foregoing implies that any disjoint pair of members of \(S(\mathcal{D}) \) is separated by \(\mathcal{D} \).

\[\text{(ii)} \]
Next let \((E, E)\) be a countably generated analytic space. Then, by Proposition 7.9, the space \((E, E)\) may be supposed to be a Souslin subspace of \((\kappa, D)\) and consequently \(S(E) \subseteq S(D) \) by Proposition 4.4. As \(S(D) \) is separated by \(D \), so is \(S(E) \). Since each member of \(S(E) \) is contained in \(E \), the collection \(S(E) \) is separated by the trace \(E \) of \(D \) on \(E \) as well.

\[\text{(iii)} \]
Finally, let \((E, E)\) be an arbitrary analytic space and let \(S^1, S^2 \subseteq S(E) \).

Then there exists a countable subclass \(C \) of \(E \) such that \(S^1, S^2 \subseteq S(C) \subseteq S(\sigma(C)) \) (see the remark following the definition of \(S \)). Applying \(\text{(ii)} \) to the space \((E, \sigma(C))\) we conclude that the pair \(S^1, S^2 \) is separated by \(\sigma(C) \), and hence, also by the larger class \(E \).

COROLLARY 8.3. If \((E, E)\) is an analytic space, then

\[E = \{ A \subseteq E \mid A \subseteq S(E) \text{ and } A^c \subseteq S(E) \} \]

and hence, \(E \) is the largest \(\sigma \)-algebra contained in \(S(E) \).
The following proposition is a generalization of the "only if"-part of Proposition 7.5.

Proposition 8.4. Let \(\varphi \) be a measurable mapping of an analytic space \(F \) into a countably separated measurable space \(G \). Then the range of \(\varphi \) is a Souslin subset of \(G \) and \(\varphi \) has a universally measurable right inverse. Then, in addition, \(\varphi \) is injective, then \(\varphi \) is an isomorphic embedding.

Proof. To prove the first part of the proposition we can repeat the first part of the proof of Proposition 7.5, with \(F \) replaced by \(G \).

Next, let \(\varphi \) be injective. Let \(A \) be a measurable subset of \(F \). We shall prove that \(\varphi(A) \) is a measurable subset of \(\varphi(F) \). By Proposition 7.6, \(A \) is an analytic subspace of \(F \), which is mapped by \(\varphi \) into the countably separated space \(\varphi(F) \). So, by what has already been proved above, \(\varphi(A) \) is a Souslin subset of the space \(\varphi(F) \). A similar reasoning holds for the set \(A^c \). Since \(\varphi \) is injective, \(\varphi(A) \) and \(\varphi(A^c) \) are complementary Souslin subsets of \(\varphi(F) \). From Proposition 7.6 we deduce that \(\varphi(F) \) is an analytic space and, by Corollary 8.3, this implies that \(\varphi(A) \) is measurable. As \(A \) is arbitrarily chosen, it follows that \(\varphi \) is an isomorphic embedding.

Proposition 8.5. Let \((E,F) \) be an analytic space. Then any countable separating subclass of \(E \) generates \(E \).

Proof. Let \(C \) be a countable separating subclass of \(E \). Then \((E,\sigma(C)) \) is countably separated and the identity on \(E \) is a measurable injection of \((E,F)\) onto \((E,\sigma(C))\). The preceding proposition now implies that \(E \) equals \(\sigma(C) \).

Proposition 8.5 implies an extremal property of the \(\sigma \)-algebra of a countably separated analytic space: no smaller \(\sigma \)-algebra is countably separated, no larger one is analytic.

In the definition of analytic spaces as well as some propositions of the last two sections and in their proofs we can distinguish two parts: one bearing on Souslin sets and another one having to do with universally measurable mappings. Moreover, inspection of the proofs mentioned reveals that the first part is in a sense independent of the second one and, after skipping everything bearing on universally measurable mappings in definitions as well as in propositions and proofs, we are left with a theory.
about a class of spaces that is possibly larger than the class of analytic spaces.

As has been remarked at the end of Section 4, another possible modification of the theory is obtained by substituting limit measurable sets and mappings for universally measurable ones. The following proposition implies that these three theories coincide for measurable spaces that are countably generated or countably separated.

PROPOSITION 8.4. Let F be a measurable space that is countably generated or countably separated. Then the following statements are equivalent:

i) F is analytic.

ii) For every measurable space E and every Souslin subset S of $E \times F$, the projection of S on E is a Souslin subset of E.

iii) For every measurable mapping $\varphi: F \to \mathbb{R}$ the range of φ is a Souslin subset of \mathbb{R}.

PROOF. The proof consists of two parts.

Part I. We first consider the case that F is countably generated. We shall prove the implications i) \Rightarrow ii) \Rightarrow iii) \Rightarrow i).

i) \Rightarrow ii). This follows from the definition of analyticity.

ii) \Rightarrow iii). Let $\varphi: F \to \mathbb{R}$ be a measurable mapping. Since \mathbb{R} is countably separated, the graph of φ is a measurable subset of $F \times \mathbb{R}$ by Proposition 7.3. As a consequence of ii) the projection on \mathbb{R} of this graph, being the range of φ, is a Souslin subset of \mathbb{R}.

iii) \Rightarrow i). Let $\varphi: F \to \mathbb{R}$ be measurable. By Proposition 7.3 it is sufficient to prove that φ has a universally measurable right inverse.

Let $\varphi: F \to \mathbb{R}$ be strictly measurable and let $r: \varphi F \to F$ be a measurable right inverse of φ; the existence of such mappings follows from Proposition 7.4. Moreover, it follows from iii), applied to φ, that the range φF is a Souslin subspace of \mathbb{R} and hence, that φF is analytic.

Now we show that $\varphi = \sigma = r \circ \psi$. To this end let x and x' be points of F such that $\varphi x = \varphi x'$. Then φx and $\varphi x'$ are not separated by the σ-algebra \mathcal{D} of \mathbb{R} and, therefore, x and x' are not separated by the σ-algebra $\psi^{-1}\mathcal{D}$ of F. As $\varphi^{-1}\mathcal{D} \subseteq \psi^{-1}\mathcal{D}$, by the measurability of φ, the points x and x' are not separated by $\varphi^{-1}\mathcal{D}$ either, and therefore φx and $\varphi x'$ are not separated by \mathcal{D}.
So $x = x'$. In particular we can take $x' := (\eta \phi) x$. Then $\phi x' \equiv \phi x$, and hence, $\phi x \equiv \phi x' = (\phi \phi \phi) x$. The arbitrariness of x now implies $\phi \equiv \eta = \eta \phi \phi$.

Next consider the mapping $\phi \equiv \eta: \phi F \to \mathbb{D}$. It follows from the equality just obtained that the range of $\phi \equiv \eta$ equals the range of ϕ. Moreover, $\phi \equiv \eta$ is measurable, since ϕ and η are, and ϕF is analytic. So, by Proposition 7.5 $\phi \equiv \eta$ has a universally measurable right inverse, $F: \phi F \to \phi F$ say. It follows that the mapping $\eta \equiv \xi$ is a universally measurable right inverse of ϕ.

Part II. Next let F be countably separated, and suppose that at least one of the statements i), ii) or iii) is true.

Let F be the σ-algebra of F_1, C a countable separating subclass of F, $A \subseteq F_1$, and \mathcal{A} the σ-algebra generated by the collection $C \cup \{A\}$. Then A is a sub-σ-algebra of F_1, so each (hence, at least one) of the statements i), ii) or iii) that holds for (F, F_1) also holds for (F, \mathcal{A}). As F is countably generated, it follows from Part I that the three statements are equivalent for (F, \mathcal{A}). So each of them (in particular iii)) holds for (F, A), i.e. (F, A) is analytic. It now follows from Proposition 8.5 that the countable separating class C generates A and therefore that $A \subseteq o(C)$.

Since A is an arbitrarily chosen member of F, we have $F = o(C)$, and hence, $F = o(C)$. So (F, F_1) is countably generated and, by Part I, the three statements are equivalent for (F, F_1). As at least one of them is true, they all are.

The measurable spaces appearing in many applications are countably generated or, when not, one often is interested only in a function defined on such a space, to which again there corresponds a countably generated σ-algebra. So there would have been no serious loss of applicability had we incorporated in the definition of analytic spaces the condition that such a space were countably generated. This however would have been at the cost of stability of the class of analytic spaces under the formation of measurable images and product spaces. A similar remark can be made about separation: a nonseparated measurable space is not essentially different from a separated one, but the property of being separated is not conserved under the formation of measurable images.

We conclude this section with a characterization of those measurable spaces whose σ-algebra is generated by an analytic topology. This characterization will not be used in the sequel. The σ-algebra of a measurable
space is generated by an analytic topology if that space is isomorphic to a Souslin subset of the measurable space $[0,1]$ (cf. [Hoffman-Jorgensen] Ch. III §2, theorems 3 and 4). Since the measurable spaces $[0,1]$ and \mathbb{D} are isomorphic ([Ibetskaia & Shreve] Proposition 7.16) the latter condition is equivalent to the space being isomorphic to a Souslin subspace of \mathbb{D}. It now follows from Propositions 7.2, 7.6 and 7.9 that this in turn is equivalent to the condition that the space is countably separated and analytic.

Most of our results concerning countably generated analytic spaces are known to be valid for analytic topological spaces. So these results are new only in that they have been derived by measure-theoretic means only.

§ 9. Probabilities on analytic spaces

This section is devoted to what may be called Kolmogorov's theorem for analytic spaces and to the decomposition of probabilities defined on product spaces into a marginal probability and a transition probability. In both topics semicompact classes play a central role and we start with a proposition concerning them.

PROPOSITION 9.1. Let $(\mathcal{F}, \mathcal{F})$ be a countably generated analytic space. Then there exists a semicompact subclass \mathcal{C} of \mathcal{F} such that for every $u \in \mathcal{F}$ and $A \in \mathcal{F}$:

$$u(A) = \sup \{u(C) \mid C \in \mathcal{C} \text{ and } C \subseteq A\}.$$

PROOF. As \mathcal{F} is isomorphic to the σ-algebra of some Souslin subspace of \mathbb{D} (cf. Proposition 7.9), $(\mathcal{F}, \mathcal{F})$ itself may be supposed to be a Souslin subspace of \mathbb{D}. By Proposition 5.4 the σ-algebra \mathcal{B} of \mathbb{D} is generated by a semicompact algebra \mathcal{A} and, as \mathcal{A} is closed under complementation, we have $\mathcal{B} \subseteq S(\mathcal{A})$ by Proposition 4.1. It now follows from Proposition 5.2 that, for every Souslin subset S of \mathcal{D} and for every $u \in \mathcal{D}$, we have

$$u(S) = \sup \{u(C) \mid C \in \mathcal{A} \text{ and } C \subseteq S\}.$$

Specializing to sets S contained in \mathcal{F} and probabilities u concentrated on \mathcal{F} we get

$$u(S) = \sup \{u(C) \mid C \in \mathcal{C} \text{ and } C \subseteq S\},$$
where $C := \{ C \in A_{\mathcal{B}} \mid C \in P \}$. Moreover C is a subclass of $A_{\mathcal{B}}$ and $A_{\mathcal{B}}$ is semicompact because A is (Proposition 5.1). Consequently C is semicompact as well. Finally, we observe that every member of P is the intersection of P with some member of P, and hence, is a Souslin subset of \mathcal{B} that is contained in P.

PROPOSITION 9.2. Let $(P_{n})_{n \in I}$ be a family of analytic spaces and for every finite subset i' of I let $\nu_{i'}$ be a probability on $\Pi_{i \in i'} P_{i}$ such that, for every pair i', i'' of finite subsets of I with $i' \subseteq i''$, the probability $\nu_{i''}$ is the marginal of $\nu_{i'}$ (corresponding to the projection of $\Pi_{i \in i''} P_{i}$ onto $\Pi_{i \in i'} P_{i}$). Then there exists a unique probability on $\Pi_{i \in I} P_{i}$ having the probabilities ν_{i}, (i' finite subset of I) as its marginals.

PROOF. Let $P_{i'} := \Pi_{i \in i'} P_{i}$ for each subset i' of I, and let A be the collection of measurable cylinders of $P_{i'}$. We now define $\nu: A \rightarrow R$ as follows. For every $A \subseteq A$ there exists a finite subset i' of I and a measurable cylinder A' of $P_{i'}$ such that $A = A' \times \Pi_{i \notin i'}$. Next we define $\nu(A) := \nu_{i'}(A')$. The definition of $\nu(A)$ is easily seen to be independent of the particular choice of i'. Moreover, the function ν thus defined is the only function on A whose marginals coincide with the probabilities $\nu_{i'}$. As A generates the σ-algebra of P, all that remains to be proved is σ-additivity of ν on A (see [Noveu] Proposition 1.6.1).

Let C be a subclass of A consisting of a countable collection pairwise disjoint sets together with their union. Then there exists a family $(C_{i})_{i \in I}$, with C_{i} a countable collection of measurable subsets of P_{i} for each $i \in I$, and such that C is contained in the semialgebra S of measurable cylinders of the space $\Pi_{i \in I}(P_{i}, \sigma(C_{i}))$. S is contained in A and the restriction of ν to S is the unique function on S whose marginals coincide with the restrictions of the measures ν_{i} to the spaces $\Pi_{i \in I}(P_{i}, \sigma(C_{i}))$.

Now for each $i \in I$ the space $(P_{i}, \sigma(C_{i}))$ is countably generated and analytic, being a measurable image of the space P_{i} with the original σ-algebra. Therefore each of the σ-algebras $\sigma(C_{i})$ contains a semicompact class as described in Proposition 9.1. These facts, however, imply ([Noveu] Theorem III.3) that ν is σ-additive on S, and hence, on C. From the arbitrariness of C it now follows that ν is σ-additive on A. ∎
DEFINITION. Let E and F be measurable spaces. A transition probability from E to F is a mapping of E into F.

When p is such a transition probability, $x \in E$, and B a universally measurable subset of F, then we shall usually write $p(x;B)$ instead of $p(x)(B)$ in order to enhance readability.

PROPOSITION 9.3. Let E and F be measurable spaces, let ν be a probability on E and let p be a universally measurable transition probability from E to F. Then there exists a unique probability on $E \times F$, denoted by $\nu \times p$, such that

$$\iint_{E \times F} f(d(x,y)) = \int_{E} \int_{F} f(x,y)p(x;dy)\nu(dx)$$

for every universally measurable $f: E \times F \to \mathbb{R}_+^*$.

PROOF. By Proposition 6.2, $\int f(x,y)p(x;dy)$ depends universally measurably on $(x,p(x))$ and therefore on x, because $p(x)$ depends universally measurable on x. So the repeated integral is well defined. Moreover it is easily seen to be nonnegative, to depend τ-additively on f, and to assume the value 1 for $f = 1_{E \times F}$. From this the result follows. \[\]

The notation introduced in Proposition 9.3 is consistent with the notation of product probabilities when constant transition probabilities are identified with their value. Note that for constant transition probabilities Proposition 9.3 reduces to the theorem of Tonelli (see [Cohn] Proposition 5.2.1).

In general, not every probability ν on a product space $E \times F$ can be written as the product of its marginal on E and a transition probability from E to F. When, however, the space F meets certain conditions, then such a decomposition of ν is possible, as is stated in the following proposition. This proposition, together with the "Exact selection theorem" (Proposition 7.1) forms the basis for the applications in Chapter III.

PROPOSITION 9.4. Let E be a measurable space, F a countably generated analytic space, μ a probability on $E \times F$ and ν the marginal probability of μ on E. Then there exists a measurable transition probability p from E to F such that $\mu = \nu \times p$.
PROOF. As by Proposition 7.9, the σ-algebra of F is isomorphic to the σ-algebra of some Suslin subspace of D, we can suppose F itself to be a Suslin subspace of D. Let E and F be the σ-algebras of E and F, respectively, and let \mathcal{B} be a countable semicompact algebra that generates the σ-algebra \mathcal{D} of D.

For every $B \in \mathcal{B}$ the mapping $A \mapsto \mu(A \times (B \cap F))$ is a bounded nonnegative measure on E that is absolutely continuous with respect to ν. Hence by the Radon-Nikodým theorem ([Nevu] Proposition IV.1.4) there exists a measurable function $f_B : E \to \mathbb{R}_+$ such that for every $A \in \mathcal{E}$

\[
\mu(A \times (B \cap F)) = \int_A f_B(x) \nu(dx).
\]

Now for every $A \in \mathcal{E}$, $\mu(A \times (B \cap F))$ depends additively on B and equals $\nu(A)$ for $B = \mathcal{D}$. As a consequence of (*) the same holds for the integral in (*).

Due to the countability of \mathcal{B} this implies that there is a ν-null subset N of E such that for every $x \in E \setminus N$ the function $B \mapsto f_B(x)$ is additive, and $\int_N f_B(x) \nu(dx) = 1$. Redefining the functions f_B on N by $f_B(x) = f_B(x_0)$, where x_0 is some point in $E \setminus N$, we can suppose $N = \emptyset$ and still have (*) for every $A \in \mathcal{E}$, $B \in \mathcal{B}$. As \mathcal{B} is a semicompact algebra, for each $x \in E$ the function $B \mapsto f_B(x)$ is even σ-additive, and therefore it is uniquely extendible to a probability $B \mapsto g_B(x)$ on D. The functions g_B, with $B \in \mathcal{D}$, are measurable again, because the sets $B \in \mathcal{D}$ for which g_B is measurable constitute a Dynkin class (see Preliminaries 2) containing the algebra \mathcal{B}. Moreover we have $\mu(A \times (B \cap F)) = \int_A g_B(x) \nu(dx)$ for all $A \in \mathcal{E}$ and $B \in \mathcal{D}$, because both members of this equality, taken as functions of B, are measures on D, and by (*) these measures coincide on the generating algebra \mathcal{B}.

Next consider the probability λ on \mathcal{D} defined by $\lambda(B) = \mu(E \times (B \cap F))$. Then $\lambda(F) = 1$ and, as F is universally measurable, $\lambda(F) = 1$ as well. Consequently, there exists a set $G \in \mathcal{D}$ such that $G \subset F$ and $\lambda(G) = 1$. From the definition of λ it now follows that $\mu(E \times (F \setminus G)) = 0$.

Finally, for each $x \in E$ and each $B \in \mathcal{F}$ we define $p(x)(B) := g_{B \cap G}(x)$. It is easily seen that p is a measurable transition probability from E to F. Moreover, for every $A \in \mathcal{E}$ and $B \in \mathcal{F}$ we have

\[
\mu(A \times B) = \mu(A \times B \cap G) + \mu(A \times (B \cap \mathcal{F} \setminus G)) = \int_A g_{B \cap G}(x) \nu(dx) = \int_A p(x)(B) \nu(dx) = (\nu \circ p)(A \times B),
\]
because \(\mu(A \times B \cap (E \cap F)) \leq \mu(E \times F) = 0 \). So \(\nu \) and \(\nu \times \mu \) coincide on the measurable rectangles of \(E \times F \), which implies that they are equal.

In the preceding proposition, the analyticity of \(E \) may be replaced by the weaker condition that a semicompact approximating subclass of \(F \) exists for the marginal of \(\mu \) on \(F \) (in the sense of Proposition 9.1; see [Peano 1 § Piero 1 Section 7]).

The decomposition of a probability on a product space into a marginal probability and a transition probability is, in general, not unique:

Proposition 9.5. Let \(E \) be a measurable space, \(F \) a countably generated measurable space, \(\nu \in \mathbb{E} \), and \(p, p' : E \to F \) universally measurable. Then \(\nu \times p = \nu \times p' \) \(\iff \) \(p(x) = p'(x) \) for \(\nu \)-almost all \(x \in E \).

Proof. The "if"-part is a trivial consequence of the definition of \(\nu \times p \) and \(\nu \times p' \), so let \(\nu \times p = \nu \times p' \). Let \(\mathcal{B} \) be a countable algebra generating the \(\nu \)-algebra of \(F \). For every \(B \in \mathcal{B} \) and every universally measurable subset \(A \) of \(E \) we have

\[
\int_A p(x; B) \nu(dx) = (\nu \circ p)(A \times B) = (\nu \circ p')(A \times B) = \int_A p'(x; B) \nu(dx)
\]

and hence, \(p(x; B) = p'(x; B) \) for \(\nu \)-almost all \(x \in E \). It follows from the countability of \(\mathcal{B} \) that for \(\nu \)-almost \(x \in E \) the measures \(p(x) \) and \(p'(x) \) coincide on \(\mathcal{B} \) and therefore that they are equal.

The nonuniqueness of the transition probability appearing in the decomposition of a probability \(\mu \) enables us to make this transition probability depend on \(\nu \) in a decent way:

Proposition 9.6. Let \(E \) be a countably generated measurable space and \(F \) a countably generated analytic space. Then there exists a universally measurable mapping \(p : (E \times F)^- \times E \to F \) such that every probability \(\mu \) on \(E \times F \) is equal to the product \(\nu \times q \) of its marginal \(\nu \) on \(E \) and a transition probability \(q \) from \(E \) to \(F \) defined by \(q(x) := p(\mu, x) \). When \(F = \mathbb{D} \), then \(p \) may be supposed to be measurable.
Proof. As the σ-algebra of F is isomorphic to the σ-algebra of some Souslin subspace of W, we may suppose W itself to be a Souslin subspace of W. Let E and F be the σ-algebras of E and F, respectively, let $A = \{A_n \mid n \in \mathbb{N}\}$ be a countable algebra generating E and let B be a countable semicompact algebra generating the σ-algebra \mathcal{D} of W. For each $n \in \mathbb{N}$ let G_n be the partition of E generated by $\{A_1, A_2, \ldots, A_n\}$.

Now let ν be a probability on $E \times F$, ν its marginal on E, and $B \in \mathcal{B}$. We define a sequence $(f_n)_{n \in \mathbb{N}}$ of functions on E by

$$f_n(x) := \sum \{ \mu(G \times B_0F) : G \in \mathcal{D}_n \} \mathcal{L}_G(x) \mid G \in G_n \text{ and } \mu(G \times B_0F) > 0 \} .$$

Let $m, n \in \mathbb{N}$ and $m \leq n$. Then G_n is a refinement of G_m, so for each $A \in \sigma(G_m)$ we have

$$\int_A f_n d\nu = \int_A \left\{ \int G \in G_n \text{ and } G \subseteq A \} \nu(G \times B_0F) \right\} d\nu = \int A \left\{ \nu(G \times B_0F) \mid G \in G_n \text{ and } G \subseteq A \} \right\} d\nu = \nu(A \times B_0F) .$$

Moreover each of the functions f_n is bounded by 1. This implies that the sequence $(f_n)_{n \in \mathbb{N}}$ is a martingale relative to the σ-algebras $\sigma(G_n)$ and the measure ν, and that the martingale convergence theorem applies (see [Chow & Teicher] §7.4 Theorem 2 ii)). So, if we define $f := \limsup f_n$, then

$$\int_A f d\nu = \int_A f_n d\nu = \nu(A \times (B_0F))$$

for every $n \in \mathbb{N}$ and $A \in \sigma(G_n)$. Consequently, for every $A \in \bigcup_{n \in \mathbb{N}} \sigma(G_n) = A$, we have $\int f d\nu = \nu(A \times (B_0F))$ and, as both members of this equality depend σ-additively on ν, this equality holds for every $A \in \sigma(A) = A$.

The function f introduced above depends on ν and B, and we now make this dependence explicit by defining $f_\nu : (E \times F)^{\infty} \times E \times B \times \mathbb{R}$ as

$$f_\nu(x, \alpha, B, \nu) := \limsup \{ \nu(G \times (B_0F)) \mid G \in G_n \} \mathcal{L}_G(x) ,$$

where \mathcal{L} is the measurable function on \mathbb{R} defined by $h(t) = t^{-1}$ if $t \neq 0$ and $h(0) = 0$. The foregoing then implies that, for every $\nu \in (B_0F)^{\infty}$, $A \in E$ and $B \in \mathcal{B}$, we have
\[(*) \int_A f(\mu, x, A) \nu(dx) = \mu(A \times (\mathbb{E} \times \mathbb{F})) , \]

where \(\nu \) is the marginal of \(\mu \) on \(\mathbb{E} \). Moreover, it follows directly from the
definition of \(f \), that \(f(\mu, x, B) \) is a measurable function of \(\mu, x \) for every
\(B \in \mathbb{E} \).

We now turn to the dependence on \(B \). In general \(f(\mu, x, B) \), taken as a
function of \(B \), is not a probability on \(\mathbb{E} \), but a nonessential redefinition of \(f \) suffices to make it one. Let \(\mathcal{N} \) be the set of pairs \((\mu, x) \in \mathbb{E} \times \mathbb{F} \) for which the function \(B \mapsto f(\mu, x, B) \) is not additive on \(\mathbb{E} \) or for which
\(f(\mu, x, B) \neq 1 \). Then

\[\mathcal{N} = \bigcup \{ (\mu, x) \in \mathbb{E} \times \mathbb{F} \mid f(\mu, x, B_1) + f(\mu, x, B_2) \neq f(\mu, x, [B_1 \cup B_2]) \}
\]

or \(f(\mu, x, \Omega) \neq 1 \),

where the union is over the countable set of disjoint pairs \((B_1, B_2)\) of
members of \(\mathbb{E} \). The measurability of \(f \) mentioned above now implies that \(\mathcal{N} \) is
a measurable subset of \(\mathbb{E} \times \mathbb{F} \). Moreover, for every \(\mu \in \mathbb{E} \), the
section \(\{ x \in \mathbb{F} \mid (\mu, x) \in \mathcal{N} \} \) is a \(\nu \)-null set, where \(\nu \) is the marginal
of \(\mu \) on \(\mathbb{F} \). Let \(B_1, B_2 \in \mathbb{E} \) be disjoint. It then follows from \((*)\), that

\[\int_A [f(\mu, x, B_1) + f(\mu, x, B_2) - f(\mu, x, [B_1 \cup B_2])] \nu(dx) = 0 \]

for every \(A \in \mathbb{E} \), and hence, that the integrand is a \(\nu \)-null function.

Similarly \(f(\mu, x, \Omega) = 1 \) is a \(\nu \)-null function of \(x \). Together with the
definition of \(\mathcal{N} \) this implies the result on the sections of \(\mathcal{N} \).

Now let \((\mu_0, x_0) \in \mathcal{N} \) and, for each \(B \in \mathbb{E} \), redefine \(f(\cdot, \cdot, B) \) on \(\mathbb{E} \) by
setting it equal to \(f(\mu_0, x_0, B) \). Then, for every \((\mu, x) \in \mathbb{E} \times \mathbb{F} \),
\(f(\mu, x, B) \) is an additive function of \(B \) on \(\mathbb{E} \) and \(f(\mu, x, \Omega) = 1 \). Moreover, for
every \(B \in \mathbb{E} \), \(f(\mu, x, B) \) is still a measurable function of \(\mu, x \), and for
every \(\mu, A \in \mathbb{E} \), the equality \((*)\) still holds.

As \(\mathbb{E} \) is a semicompact algebra, for every \((\mu, x)\) the function
\(B \mapsto f(\mu, x, B) \) is even \(\nu \)-additive on \(\mathbb{E} \) by Proposition 5.5, and it therefore
is uniquely extendible to a probability \(p(\mu, x) \) on \(\mathcal{H}(\mathbb{E}) \). It follows from
Proposition 2.2 applied to the subclass \(\mathcal{F} \) of \(\mathcal{H}(\mathbb{E}) \), and from Proposition 3.5,
that \(p(\mu, x, B) \) depends (universally) measurable on \((\mu, x)\) for every (uni-versally)
measurable subset \(B \) of \(\mathcal{D} \). Also, it follows from \((*)\), that for
every \(u \in (E \times F)^\sim \), \(A \subset E \) and \(B \subset F \) we have:

\[
(\ast \ast) \quad \int_A p(u, x)(B) \nu(dx) = \mu(A \times (BnF))
\]

and, as both members of this equality depend \(\sigma \)-additively on \(A \) as well as on \(B \), the equality holds for every (universally) measurable subset \(A \) of \(E \) and \(B \) of \(F \).

When \(F = \mathbb{D} \), then the foregoing implies that \(p \) is a measurable mapping as mentioned in the proposition. When \(F \neq \mathbb{D} \) for each \((u, x) \in (E \times F)^\sim \times \mathbb{D} \) we consider the restriction of \(p(u, x) \) to the \(\sigma \)-algebra \(F \) of \(F \). Such a restriction is a \(\nu \)-additive function on \(F \), but it need not be a probability on \(F \), since it may fail to attain the value \(1 \) at \(F \). Now let

\[
M := \{(u, x) \in (E \times F)^\sim \times \mathbb{D} \mid p(u, x)(F) \neq 1\}
\]

Then \(M \) is universally measurable and, taking \((u_1, x_1) \notin M \), we redefine \(p \) on \(M \) by setting it equal to \(p(u_1, x_1) \), which makes \(p \) a universally measurable mapping of \((E \times F)^\sim \times \mathbb{D} \) into \(F \). Moreover, this redefinition of \(p \) does not affect the validity of \((\ast \ast) \), because for every \(u \in (E \times F)^\sim \) we have

\[
\int_A [p(u, x)(F) - 1] \nu(dx) = \mu(A \times F) - \nu(A) = 0
\]

for every universally measurable subset \(A \) of \(E \), and hence, the integrand is a \(\nu \)-null function. All this now implies, that the (redefined) mapping \(p \) meets the requirements of the proposition. \(\square \)

In the following two propositions we consider conditional expectations of functions defined on analytic spaces. Let \(p \) be a measurable transition probability from a measurable space \(E \) to a measurable space \(F \), and for every positive measurable function \(f \) on \(F \) let the function \(g \) on \(E \) be defined by \((g)(x) := \int f(y)p(x; dy) \). Then, by Proposition 6.1, \(g \) is measurable. Moreover, for each \(x \in E \), \((g)(x)\) depends \(\sigma \)-additively on \(F \).

These facts, together with the decomposition of probabilities given in Proposition 9.4, enable us to construct regular versions of conditional expectations. For general information see [Chow & Teicher] Section 7.2 and, in particular, Theorem 3; in fact, our next proposition is a generalization of this theorem.
PROPOSITION 9.7. Let \((E,F)\) be a measurable space, \(\nu\) a probability on \(E\) and \(F, G\) sub-\(\sigma\)-algebras of \(E\) such that \((E,F)\) is a countably generated analytic space. Then there exists an \(F\)-measurable transition probability \(p\) from \((E,F)\) to \((E,G)\) such that, for every positive \(G\)-measurable function \(f\) on \(E\), the function \(y \mapsto \int f(x)p(y;dx)\) is a version of the conditional expectation of \(f\) with respect to \(F\) and \(\nu\).

PROOF. Let the measurable mapping \(\psi : (E,F) \times (E,G) \rightarrow (E,G)\) be defined by \(\psi(x) := (x,\xi)\). Then \(\nu \circ \psi^{-1}\) is a probability on \(F \otimes G\) whose marginal on \(F\) equals \(\nu\). As \((E,G)\) is countably generated and analytic, there exists a measurable transition probability \(p\) from \((E,F)\) to \((E,G)\) such that

\[
\nu \circ \psi^{-1} = \nu \times p.
\]

Now for every \(A \in F\) and \(B \in G\) we have

\[
\int_A 1_B \,d\nu = \nu(AnB) = (\nu \circ \psi^{-1})(AnB) = (\nu \times p)(AnB) = \int_A \int_B p(y;dx) \,d\nu(y) = \int_A \int_B p(y;dx) \,d\nu(y).
\]

So, for every \(A \in F\) and for every positive \(G\)-measurable function \(f\) on \(E\), the equality

\[
\int_A f \,d\nu = \int_A \int_B f(x)p(y;dx) \,d\nu(y)
\]

holds.

PROPOSITION 9.8. Let \((E,E)\) be a countably generated analytic space, \(\nu\) a probability on \(E\), and \(F\) a sub-\(\sigma\)-algebra of \(E\). Then there exists an \(F\)-measurable transition probability \(p\) from \((E,F)\) to \((E,E)\) such that, for every positive \(E\)-measurable function \(f\), the function \(y \mapsto \int f(x)p(y;dx)\) is a version of the conditional expectation of \(f\) with respect to \(F\) and \(\nu\).

PROOF. Apply Proposition 9.7 taking \(G := E\).

Some properties of probabilities on a measurable space give rise to measurable, or Souslin, subsets of the space of all probabilities. In the rest of this section we shall discuss some of these. The reader may think the properties considered somewhat peculiar; their significance will become evident in Chapter III.
PROPOSITION 9.9. Let \(E \) and \(F \) be countably generated measurable spaces, let \(F \) be analytic and let \(G \) be a measurable (Souslin) subset of \(E \times F \). Then the probability \(\mu \) on \(E \times F \) that can be decomposed into their marginal on \(E \) and a universally measurable transition probability whose graph is contained in \(G \) constitute a measurable (Souslin) subset of \((E \times F) \).

PROOF. Let \(E, F, G \) and \(H \) be the \(\sigma \)-algebras of \(E, F \) and \(H \), respectively. As \(F \) is a countably generated analytic space, \(F \) is isomorphic to the \(\sigma \)-algebra of some Souslin subspace of \(H \) by Proposition 7.9. So \(F \) itself may be supposed to be a Souslin subspace of \(H \).

For the proof we need some mappings, and we start by introducing them. Let \(\psi: E \times H \rightarrow [0,1] \) be defined by \((x,u) \mapsto \psi(x,u) = \mu(E \cap H) \) \((x \in E) \). Since \(F = \{ \mu \in H \mid \mu \in D \} \), the mapping \(\psi \) is strictly measurable. Consequently, the mapping \((x,u) \mapsto (x,\psi(x,u)) \) of \(E \times H \) into \(E \times [0,1] \) is strictly measurable as well, and, therefore, there exists a measurable (Souslin) subset \(G' \) of \(E \times [0,1] \) such that

\[
\forall (x,u) \in E \times H \quad \{ (x,u) \in G' \}.
\]

Next let \((E \times F) \times (E \times H) \) be defined by \((x,u) \mapsto \psi(x,u) \) \((x \in E) \). As \(E \times F = \{ C \cap (E \times F) \mid C \in E \times H \} \), the mapping \(\psi \) is (strictly) measurable. Also, for each \(v \in E \) and for every universally measurable \(q: E \rightarrow [0,1] \), we have

\[
\int (\psi(q) \mathbb{1}(A \times B)) = \psi(q)(A \times B) = \int A q(x)(B \cap F) \nu(\text{d}x) = \int A q(q(x))(B \cap F) \nu(\text{d}x) = \int A q(x)(B \cap F) \nu(\text{d}x) = \int A q(x)(B \cap F) \nu(\text{d}x)
\]

for every \(A \in E \) and \(B \in H \), and hence

\[
\psi(q) = \nu \times (\nu q).
\]

Further let \((E \times H) \times \omega \rightarrow [0,1] \) be measurable and such that for each \(v \in E \) and for every universally measurable \(q: E \rightarrow [0,1] \)

\[
p(q(x),v) = q(x) \text{ for } v\text{-almost every } x \in E.
\]
Such a mapping p exists by Propositions 9.5 and 9.6.

Finally, let $\chi: (E \times \overline{F}) \to (E \times \overline{F})$ be defined by

$$
\left\{ \begin{array}{l}
\int_{E \times \overline{F}} f d(\chi) := \int_{E \times \overline{F}} f(x, p(u, x)) u(d(x, y)), \\
\end{array} \right.
$$

for each positive measurable function f on $E \times \overline{F}$. In (4), the integral on the right hand side depends measurably on ν by Proposition 6.2 and this implies that the mapping χ is measurable. Note that (4) is equivalent to

$$
\left\{ \begin{array}{l}
\int_{E \times \overline{F}} f d(\chi) = \int_{E \times \overline{F}} f(x, p(u, x)) \nu(dx), \\
\end{array} \right.
$$

where ν is the marginal of μ on E.

Now let μ be a probability on $E \times \overline{F}$ and let $\nu \times \eta$ be a decomposition of μ into its marginal ν on E and a universally measurable transition probability from E to \overline{F}. Then we have

$$
[(x, \eta)(\nu) G') = [\chi(\nu \times \eta)(\nu) G']
$$

$$
= [x(\nu \times (\nu \times \eta))] G' = \int_{E \times \overline{F}} 1_G d\chi(\nu \times (\nu \times \eta))
$$

$$
= \int_{E} 1_G(x, p(u \times (\nu \times \eta), x)) \nu(dx)
$$

$$
= \int_{E} 1_G(x, (\nu \times \eta)(x)) \nu(dx)
$$

So, when the graph of η is contained in G, then $1_G(x, q(x)) = 1$ for ν-almost all $x \in E$, and hence, $[(x, \eta)(\nu) G'] = 1$. Suppose, on the other hand, that the latter equality holds. Then $(x, q(x)) \in G$ for ν-almost all $x \in E$.

Now we may assume that a universally measurable mapping $q_0: E \to \overline{F}$ exists whose graph is contained in G; otherwise the proposition is trivially true. When we redefine $q(x) := q_0(x)$ for those $x \in E$ for which $(x, q(x)) \notin G$, then the graph of q will be contained in G and the equality $\mu = \nu \times q$ will still hold.
The foregoing implies that the probabilities \(\mu \) on \(E \times F \) that can be decomposed into their marginal on \(E \) and a universally measurable transition probability whose graph is contained in \(G \), can be characterized by the equality \(((x,\mu) \circ \nu)(O') = 1 \). Therefore, by the measurability of \(\mu \circ \nu \), they constitute a measurable (Souslin) subset of \((E \times F)^- \).

A particularly useful example of the measurable (Souslin) subset of \(E \times \tilde{F} \) occurring in the foregoing proposition is expressed in

Proposition 9.10. Let \(E \) and \(F \) be measurable spaces, \(S \) a measurable (Souslin) subset of \(E \times F \), and for every \(x \in X \) let \(S_x := \{ y \in F \mid (x,y) \in S \} \). Then \(\{(x,\lambda) \in E \times \tilde{F} \mid \lambda(S_x) = 1\} \) is a measurable (Souslin) subset of \(E \times \tilde{F} \).

Proof. For every \((x,\lambda) \in E \times \tilde{F} \) we have

\[
\lambda(S_x) = \int_{S_x} 1_S(x',y') (\delta_x \times \lambda)(dx',dy').
\]

It follows from Proposition 6.1 that the integral is a measurable (Souslin) function of \(\delta_x \times \lambda \), and the examples 1 and 5 following Proposition 2.2 imply that \(\delta_x \times \lambda \) depends measurably on \((x,\lambda) \). From this the result follows.

In the applications of analytic spaces in Chapter III we shall encounter convex linear combinations of probabilities. The following propositions express the fact that certain measurability properties of a set \(M \) of probabilities are preserved when we add to \(M \) all convex linear combinations of its members.

Definition. Let \(M \) be a set of probabilities on a measurable space \(E \). A probability \(\mu \) on \(E \) is called a countable convex combination of members of \(M \) if there exist a countable family \((\mu^m)_{m \in \mathbb{N}}\) of probabilities in \(M \), and a countable family \((\alpha_m)_{m \in \mathbb{N}}\) of numbers in \((0,1)\), such that \(\sum_{m \in \mathbb{N}} \alpha_m = 1 \) and \(\sum_{m \in \mathbb{N}} \alpha_m \mu^m = \mu \). The set of countable convex combinations of members of \(M \) is called the \(\sigma \)-convex hull of \(M \). \(M \) is called \(\sigma \)-convex, if \(M \) equals its \(\sigma \)-convex hull.
PROPOSITION 9.11. Let \(E \) and \(F \) be measurable spaces, \(G \) a subset of \(E \times \overline{F} \) and \(M \) the set of probabilities on \(E \times F \) that can be decomposed into their marginal on \(E \) and a universally measurable transition probability whose graph is contained in \(G \). When each of the sections \((\lambda < \overline{F} \mid (x, \lambda) \in G) \) \((x \in E) \) of \(G \) is \(\sigma \)-convex, then \(M \) is \(\sigma \)-convex as well.

Proof. Let \(u = \sum_{m \in I} \alpha_m \nu_m \) be a countable convex combination of probabilities on \(E \times F \) such that for each \(m \in I \) the probability \(\nu_m \) can be decomposed into its marginal \(\nu_m^E \) on \(E \) and a universally measurable transition probability \(\nu_m^F \) whose graph is contained in \(G \). Since the marginal \(\nu \) of \(u \) on \(E \) equals \(\sum_{m \in I} \nu_m \), for each \(m \in I \) the probability \(\nu_m \) is absolutely continuous with respect to \(\nu \), and by the Radon-Nikodym theorem there exists a positive measurable function \(f_m \) on \(E \) such that \(d\nu_m = f_m \, d\nu \). Clearly \(\sum_{m \in I} \alpha_m f_m(x) = 1 \) for \(\nu \)-almost all \(x \in E \) and, as the functions \(f_m \) are determined up to a \(\nu \)-null function, this equality may be supposed to hold for each \(x \in E \).

Now let the transition probability \(p : E \times \overline{F} \) be defined by

\[
p(x) := \sum_{m \in I} \alpha_m f_m(x) p_m(x).
\]

Then the graph of \(p \) is contained in \(G \), since the sections of \(G \) are \(\sigma \)-convex. Moreover, for every measurable rectangle \(A \times B \subset E \times F \) we have

\[
u(A \times B) = \sum_{m \in I} \alpha_m \nu_m(A \times B) = \sum_{m \in I} \alpha_m \int_A p_m(x; B) \nu_m(dx) = \int_A \sum_{m \in I} \alpha_m p_m(x; B) f_m(x) \nu(dx) = \int_A p(x; B) \nu(dx) = (\nu \times p)(A \times B),
\]

so \(u = \nu \times p \). Hence \(u \in M \). \(\square \)

Proposition 9.12. Let \(E \) be a measurable space, \(F \) a countably generated analytic space and \(S \) a Souslin subset of \(E \times \overline{F} \). Moreover let \(S \) be the subset of \(E \times \overline{F} \) such that for every \(x \in E \) the section \(\lambda \in \overline{F} \mid (x, \lambda) \in S \) of \(S \) equals the \(\sigma \)-convex hull of \(\lambda \in \overline{F} \mid (x, \lambda) \in S \). Then \(S \) is again a Souslin subset of \(E \times \overline{F} \).
PROOF

i) We first consider the case that \(E = \mathbb{D} \). Let

\[
H := [0,1]^{\mathbb{N}} \times \mathbb{D} \times \mathbb{F}^{\mathbb{N}}
\]

and

\[
H_0 := \{(x, \alpha, y) \in H \mid \sum_{m \in \mathbb{N}} \alpha_m = 1 \text{ and } \forall m \in \mathbb{N}, (x, y_m) \in S\}.
\]

It follows from the properties of product spaces (see Preliminaries 8 and 9) that, for each \(m \in \mathbb{N} \), \(\alpha_m \) and \((x, y_m) \) depend measurable on \((x, \alpha, y) \in H \). So, by Proposition 4.3, \(H_0 \) is a Souslin subset of \(H \).

As \(H \) is a product of analytic spaces, it follows from Proposition 7.6 (applied twice) that \(H_0 \) is analytic. Now let \(\chi : H_0 \to \mathbb{D} \times \mathbb{F} \) be defined by

\[
\chi(x, \alpha, y) = (x, \sum_{m \in \mathbb{N}} \alpha_m y_m).
\]

Then \(\chi \) is measurable and the range of \(\chi \) is \(\bar{S} \). Since by Proposition 2.3 \(\bar{F} \) is countably separated, \(\mathbb{D} \times \bar{F} \) is countably separated as well. So, by Proposition 8.4, \(\bar{S} \) is a Souslin subset of \(\mathbb{D} \times \bar{F} \).

ii) Next let \(E \) be an arbitrary measurable space and let \(E \) and \(F \) be the \(\sigma \)-algebras of \(E \) and \(F \), respectively. By Propositions 4.2 and 4.5 we have \(S \subseteq S(E \times \bar{F}) = SS(E \times \bar{F}) = S(E \times \bar{F}) \), and from this it follows (see the remark following the definition of the Souslin operation) that \(S \subseteq S(A \times \bar{F}) \) for some countable subclass \(A \) of \(E \). So \(S \) is a Souslin subset of \((E, E_E) \times \bar{F} \), where \(E_E := \sigma(A) \), which is a countably generated sub-\(\sigma \)-algebra of \(E \).

Let \(\psi : (E, E_E) \to \mathbb{D} \) be strictly measurable (see Proposition 7.4) and let \(\psi : (E, E_E) \times \bar{F} \to \mathbb{D} \times \bar{F} \) be defined by \(\psi(x, \lambda) = (\psi(x), \lambda) \). Then \(\psi \) is strictly measurable as well, and by Proposition 7.4 \(S = \psi^{-1} \bar{F} \) for some Souslin subset \(\bar{F} \) of \(\mathbb{D} \times \bar{F} \).

Finally, let \(\bar{F} \) be the subset of \(\mathbb{D} \times \bar{F} \) such that for every \(x \in \mathbb{D} \) the section \(\lambda \in \bar{F} \mid (x, \lambda) \in \bar{F} \) equals the \(\sigma \)-convex hull of \(\lambda \in \bar{F} \mid (x, \lambda) \in \bar{F} \). Then \(\bar{S} = \psi^{-1} \bar{F} \) by the definition of \(\psi \), and \(\bar{F} \) is a Souslin subset of \(\mathbb{D} \times \bar{F} \) by \(\psi \). So \(\bar{S} \) is a Souslin subset of \(\mathbb{D} \times \bar{F} \) by Proposition 4.3.

\[\Box \]
COROLLARY 9.15. Let E be a countably generated analytic space and let S be a Suslin subset of E. Then the convex hull of S is a Suslin subset of E.

In the foregoing (Example 1, following Proposition 2.2) we introduced probabilities δ_x concentrated at a point x. A generalization of this kind of probability is given in:

DEFINITION. A probability is called deterministic when it attains the values 0 and 1 only.

In general, a deterministic probability need not be concentrated at one point. Also, neither the set of deterministic probabilities nor the set of probabilities concentrated at a point need be a measurable subset of the space of all probabilities. However, for countably generated spaces we have:

PROPOSITION 9.14. Let E be a countably generated measurable space. Then:

i) each deterministic probability on E is concentrated at one point;

ii) the set of deterministic probabilities on E is a measurable subset of E.

PROOF. Let A be a countable algebra generating the σ-algebra E of E.

i) Let $u \in E$ be deterministic. The collection $A' := \{A \in A \mid u(A) = 1\}$ is countable, so $u(nA') = 1$, hence $nA' \neq \emptyset$. Now let $x \in nA'$. Then the probabilities u and δ_x coincide on A and therefore on E. So $u = \delta_x$.

ii) Let $u \in E$ be such that $p(A) \in \{0, 1\}$ for every $A \in A$. Then

\[\{B \in E \mid u(B) \in \{0, 1\}\} \]

is a σ-algebra that contains A, and hence, equals E; so u is deterministic. The set of all deterministic probabilities therefore equals

\[\cap_{A \in A} \{u \in E \mid u(A) \in \{0, 1\}\} \]

which is a countable intersection of measurable subsets of E and therefore measurable itself. \qed
PROPOSITION 9.13. Let \mathcal{E} and \mathcal{F} be countably generated measurable spaces, and let \mathcal{F} be analytic. Then the probabilities on $\mathcal{E} \times \mathcal{F}$ that can be decomposed into their marginal on \mathcal{E} and a universally measurable transition probability that attains deterministic values only constitute a measurable subset of $(\mathcal{E} \times \mathcal{F})^\sim$.

PROOF. Let \mathcal{D} be the set of deterministic probabilities on \mathcal{F}, and let $G = E \times D$. By Proposition 9.14 D is a measurable subset of \mathcal{F}, so G is a measurable subset of $E \times \mathcal{F}$. Application of Proposition 9.9 now gives the desired result.

The final subject of this section is Ionescu-Tulcea's theorem; in fact a generalization of that theorem, since the transition probabilities appearing in it need not be measurable. Our proof is a modification of the proofs in [Neveu] section V.1.

LEMMA 9.16. Let \mathcal{E} and \mathcal{F} be measurable spaces and let μ be a (universally) measurable transition probability from E to F. Then $\mu = \mu \times \mu$ is a (universally) measurable mapping of \mathcal{E} into $(\mathcal{E} \times \mathcal{F})^\sim$.

PROOF. Let $A \times B$ be a measurable rectangle in $\mathcal{E} \times \mathcal{F}$. Then

$$(\mu \times \mu)(A \times B) = \int \int A(x)p(x;B)\mu(dx).$$

Since the integrand is a (universally) measurable function of x, by Proposition 6.1 the integral depends (universally) measurably on μ. The result follows from Proposition 2.2 applied to the collection of measurable rectangles of $\mathcal{E} \times \mathcal{F}$.

LEMMA 9.17. Let \mathcal{E} and \mathcal{F} be measurable spaces, let μ be a probability on $E \times F$ and let $\mu^{(1)}$ and $\mu^{(2)}$ be the marginals of μ on E and F, respectively. When $\mu^{(1)}$ or $\mu^{(2)}$ is deterministic, then $\mu = \mu^{(1)} \times \mu^{(2)}$.

PROOF. Suppose that $\mu^{(1)}$ is deterministic. Let $A \times B$ be a measurable rectangle of $E \times F$. When $\mu^{(1)}(A) = 0$, then $\mu(A \times B) = \mu(A) = \mu^{(1)}(A) = 0$, so

$$\mu(A \times B) = 0 = \mu^{(1)}(A)\mu^{(2)}(B) = (\mu^{(1)} \times \mu^{(2)})(A \times B).$$
When \(\mu^{(1)}(A) = 1 \), then \(\mu(A^c \times B) = \mu(A^c \times F) = \mu^{(1)}(A^c) = 0 \), so \\
\(\mu(A \times B) = \mu(F \times B) = \mu^{(2)}(B) = \mu^{(1)}(A) \mu^{(2)}(B) = (\mu^{(1)} \times \mu^{(2)})(A \times B) \).

So \(\mu = \mu^{(1)} \times \mu^{(2)} \), because this equality holds on the class of measurable rectangles.

Proposition 9.18 (Ionescu-Tulcea's theorem). Let \((E_1, E_2, \ldots)\) be a finite or infinite sequence of measurable spaces and for each \(n\) let \(p_n\) be a (universally) measurable transition probability from \(E_1 \times \cdots \times E_n\) to \(E_{n+1}\). Then

i) for each probability \(\nu\) on \(E_1\) there is a unique probability \(\nu_0\) on \(\prod_{n=1}^{\infty} E_n\) such that

\[\nu^{(1)}_0 = \nu \text{ and, for each } n, \quad \nu^{(n+1)}_0 = \nu^{(n)}_0 \times p_n, \]

where \(\nu^{(n)}_0\) denotes the marginal of \(\nu_0\) on \(E_1 \times \cdots \times E_n\).

ii) there is a unique (universally) measurable transition probability \(p\) from \(E_1\) to \(\prod_{n=2}^{\infty} E_n\) such that, for each probability \(\nu\) on \(E_1\),

\[\mu_0 = \nu \times p. \]

Proof. We prove the statement for infinite sequences; the case of finite sequences is contained in this.

Let \(A\) be the algebra of measurable subsets of the space \(\prod_{n=1}^{\infty} E_n\) that depend on only finitely many coordinates. Let \(x_i \in E_i\) and let us define the function \(P\) on \(A\) as follows: For every \(m \in \mathbb{N}\) and for every \(A \in A\) depending on the first \(m\) coordinates only

\[P(A) := (\cdots (\delta_{x_1} \times p_1) \times \cdots \times p_m)(e_A), \]

where \(e_m\) is the projection of \(\prod_{n=1}^{\infty} E_n\) onto \(\prod_{n=m+1}^{\infty} E_n\). Note that for each \(A\) this definition does not depend on the particular choice for \(m\). Clearly, \(P\) is additive on \(A\); we shall show that \(P\) is \(\nu\)-additive on \(A\), or, equivalently, that \(P\) is continuous at \(\emptyset\). We argue by contradiction.
So let \(\{ A_\nu \}_{\nu \in \mathbb{N}} \) be a decreasing sequence in \(A \) satisfying \(\cap_{\nu \in \mathbb{N}} A_\nu = \emptyset \), and suppose that \(\lim_{\nu \to \infty} P(A_\nu) > 0 \). Without loss of generality we suppose that for each \(n \in \mathbb{N} \) the set \(A_n \) depends on the first \(n \) coordinates only, so

\[
\lim_{\nu \to \infty} (\ldots (A_{x_1} \times p_{i_1}) \times \ldots \times p_{i_n}) (\phi A_\nu) = \lim_{\nu \to \infty} P(A_\nu) > 0 .
\]

We shall prove, by induction on \(n \), that an \(x \in \prod_{n \geq 1} E_n \) exists such that for each \(n \in \mathbb{N} \)

\[
\limsup_{m \to \infty} (\ldots (\delta(x_1, \ldots, x_n) \times p_{i_1}) \times \ldots \times p_{i_n}) (\phi A_m) > 0 .
\]

For \(n = 1 \), (3) is a consequence of (2). Also, for each \(n \in \mathbb{N} \) by the definition of \(\delta(x_1, \ldots, x_n) \times p_{i_n} \) the inequality (3) can be written as

\[
\limsup_{m \to \infty} \left\{ (\ldots (\delta(x_1, \ldots, x_{n+1}) \times p_{i_{n+1}}) \times \ldots \times p_{i_n}) (\phi A_m) \right\} \mid_{n \to \infty} > 0 ,
\]

and it follows from Fatou's lemma (see [Ash] 1.6.8) that this inequality remains valid when the order of integration and formation of the limit is changed. Hence

\[
\limsup_{m \to \infty} (\ldots (\delta(x_1, \ldots, x_{n+1}) \times p_{i_{n+1}}) \times \ldots \times p_{i_n}) (\phi A_m) > 0
\]

for some \(x_{n+1} \in E_{n+1} \).

Let \(n \in \mathbb{N} \). As \(\{ A_\nu \}_{\nu \in \mathbb{N}} \) is a decreasing sequence and since for each \(m \) the set \(A \) depends on the first \(m \) coordinates only, for each \(m \geq n \) we have

\[
(\ldots (\delta(x_1, \ldots, x_n) \times p_{i_n}) \times \ldots \times p_{i_m}) (\phi A_m) \leq
\]

\[
(\ldots (\delta(x_1, \ldots, x_n) \times p_{i_n}) \times \ldots \times p_{i_n}) (\phi A_n) =
\]

\[
\delta(x_1, \ldots, x_n) (\phi (\cap_{\nu \in \mathbb{N}} A_\nu)) = A_n .
\]

Together with (3) this implies that \(I_n(x) > 0 \), and hence, \(x \in A_n \). Since \(n \) is arbitrary, we conclude that \(x \in \cap_{\nu \in \mathbb{N}} A_\nu \), which contradicts our assumption \(\cap_{\nu \in \mathbb{N}} A_\nu = \emptyset \).
So P is σ-additive on A. Since the algebra A generates the σ-algebra of the space $\prod_{n=1}^{\infty} E_n$, P can be extended to a probability on that space, denoted again by P.

We now make explicit the dependence of P on x_1 by writing $P(x_1)$ instead of P. It follows from (1) by repeated application of Lemma 9.16 and by the measurability of ℓ that $P(x_1)(A)$ depends (universally) measurable on x_1 for each $A \in A$. Together with Proposition 2.2 this implies that the probability $P(x_1)$ depends (universally) measurable on x_1, and hence, by example 3 of section 2 that the marginal $p(x_1)$ of $P(x_1)$ on $E := \prod_{n=2}^{\infty} E_n$ depends (universally) measurable transition probability from E_1 to E. Moreover, it follows from (1) that δ_{x_1} is the marginal of $P(x_1)$ on E_1, so by Lemma 9.17 $P(x_1) = \delta_{x_1} \times p(x_1 \mid x \in E_1)$.

Now let ν be a probability on E_1. Then for each $m \in \mathbb{N}$ and for each $A \in A$ depending on the first m coordinates only

$$(\nu \times p)(A) = \int \int \int A(x_1,y)\nu(x_1 dx_2 dy)\nu(dx_2)$$

$$= \int \int \int A(x_1,y)p(x_1 dx_2 dy)\delta_{x_1}(dx_2)\nu(dx_2)$$

$$= \int \left(\delta_{x_1} \times p(x_1) \right)(A)\nu(dx_2) = \int P(x_1)(A)\nu(dx_2)$$

$$= \int \left(\cdots \left(\delta_{x_1} \times p_1 \right) \times \cdots \times p_m \right)(x_1 A)\nu(dx_2)$$

$$= \left(\cdots (\nu \times p_1) \times \cdots \times p_m \right)(x_1 A),$$

so the marginal of $\nu \times p$ on $E_1 \times \cdots \times E_{m+1}$ is $\left(\cdots (\nu \times p_1) \times \cdots \times p_m \right)$. Hence, the probability $\nu \times p$ satisfies (1) and, since ν is arbitrary, the transition probability p satisfies (2).

Finally, the uniqueness of ν_{x_1} in (1) follows from the fact that ν_{x_1} is completely defined by its restriction to the generating algebra A, hence, by its marginals. The uniqueness of p in (2) follows from this by the identity $\nu_{x_1} = \delta_{x_1} \times p = \delta_{x_1} \times p(x_1 \mid x \in E_1)$. \qed
The main idea of Ionescu-Tulcea's theorem is that the transition probabilities \(p_1, p_2, \ldots \) can be combined into a single transition probability \(p \). Applying the above proposition to the sequence \((f^n_1, f^n_2, \ldots) \) and the probability \(\nu := \delta(x_1, \ldots, x_m) \) on \(E_1 \times \cdots \times E_m \) (\(x_n \in E_n, m > 1 \)) we obtain the usual formulation of Ionescu-Tulcea's theorem, e.g. the one given in [Neveu].
CHAPTER III
DYNAMIC PROGRAMMING

In this final chapter we shall show how analytic measurable spaces can be used to solve measurability and selection problems occurring in dynamic programming. As an analytic measurable space is a generalization of an analytic topological space (see the remark at the end of section 8), our treatment of the subject has many points in common with the formalism of dynamic programming based on analytic topological spaces and many of our propositions and proofs are mere adaptations of those met with in the topological theory. Two topics should, however, be considered as new, viz. our definition of decision models, which is a generalization of the usual one, and the existence of a, what may be called uniformly optimal, strategy (see Proposition 11.4).

§ 10. Decision models

For heuristics concerning decision models, which provide the mathematical structure dynamic programming is based on, we refer to [Hinderer] and [Bertsekas & Shreve].

DEFINITION. A decision model is a quintuple \((S,A,G,p,u)\), the elements of which can be characterized and interpreted as follows.

i) \(S\) is a sequence of countably generated analytic spaces \((S_n)_{n \in \mathbb{N}}\).
 \(S_n\) is called the state space at time \(n\). Members of \(S_1\) are called initial states.

ii) \(A\) is a sequence of countably generated analytic spaces \((A_n)_{n \in \mathbb{N}}\).
 \(A_n\) is called the space of actions that are available at time \(n\).

For each \(n \in \mathbb{N}\) we define \(H_n := S_1 \times A_1 \times S_2 \times \ldots \times S_n\) and
\(H := \prod_{n=1}^{\infty} (S_n \times A_n)\). \(H\) is called the space of realizations and \(H_n\) the space of histories at time \(n\).

iii) \(G\) is a sequence \((G_n)_{n \in \mathbb{N}}\), where \(G_n\) is a Souslin subset of \(H_n \times A_n\).

Moreover for each \(n \in \mathbb{N}\) and \(h \in H_n\) the set
\(G_{n,h} := \{ y \in \hat{A}_h \mid (h, y) \in G \} \) is nonempty; \(G_{n,h} \) is called the set of admissible probabilities at time \(n \) given history \(h \).

iv) \(p \) is a sequence \((p_n)_{n \in \mathbb{N}} \), where for each \(n \in \mathbb{N} \), \(p_n \) is a measurable transition probability from \(H_n \times A_n \) to \(S_n \); \(p \) is called the transition law.

v) \(u \) is a Soulin function on \(H \). It is called the utility.

A strategy for the decision model is defined above is a sequence \((q_n)_{n \in \mathbb{N}} \), where \(q_n \) is a universally measurable transition probability from \(H_n \) to \(A_n \) whose graph is contained in \(G_n \). For every decision model at least one strategy exists, because for every \(n \in \mathbb{N} \) it follows from the analyticity of \(\hat{A}_n \) that there exists a universally measurable mapping \(q_n \) of \(H_n \) into \(\hat{A}_n \) whose graph is contained in \(G_n \).

By an initial probability we simply mean a probability on \(S \). When for each \(n \in \mathbb{N} \) and every \(h \in H_n \) the set \(G_{n,h} \) of admissible probabilities is \(\sigma \)-convex, then the decision model will be said to allow combination of strategies.

In the usual definition of a decision model, instead of \(G \) a sequence \((D_n)_{n \in \mathbb{N}} \) is introduced, where \(D_n \) is a Souslin subset of \(H_n \times A_n \). For each \(n \in \mathbb{N} \) and \(h \in H_n \), the set \(D_{n,h} := \{ y \in A_n \mid (h, y) \in D_n \} \) is called the set of admissible actions at time \(n \) given history \(h \). A strategy is then defined as a sequence \((q_n)_{n \in \mathbb{N}} \), where \(q_n \) is a universally measurable transition probability from \(H_n \) to \(A_n \) such that \(\forall h \in H_n, q_n(h; D_{n,h}) = 1 \).

It is easily deduced from Proposition 9.10 that our definition of a decision model is a generalization of the usual one. The generalized decision model has the advantage that one can prescribe not only which actions may be used at each step of a decision process, but also how they may be combined into a probability on the action space. For example, the property that a strategy \(q \) is deterministic (i.e. that each of the probabilities \(q_n(h) \) is deterministic) is equivalent to the condition that for each \(n \in \mathbb{N} \) the graph of \(q_n \) is contained in \(H_n \times \hat{A}_n \), where \(\hat{A}_n \) is the measurable subset of \(\hat{A}_n \) consisting of all deterministic probabilities on \(A_n \) (see Proposition 9.14).

To every initial probability of a decision model and to each strategy there corresponds, in a natural way, a probability on the space of
realizations. Moreover, the set of all such probabilities turns out to have useful algebraic and measure-theoretic properties.

Definition. For every probability \(\mu \) on the space of realizations of a decision model \(\mathcal{U}(2n-1) \) and \(\mu(2n) \) denote its marginals on \(H_n \) and \(H_n \times A_n \), respectively (\(n \in \mathbb{N} \)) (where \(H_n \) and \(A_n \) are the space of histories and the space of actions, respectively, both at time \(n \)).

Proposition 10.1. Let \(\nu \) be an initial probability and \(\zeta \) a strategy for a decision model with transition law \(p \). Then there exists a unique probability \(\mu \) on the space of realizations satisfying

\[
\mu(1) = \nu, \quad \mu(2n) = \mu(2n-1) \times q_n, \quad \text{and} \quad \mu(2n+1) = \mu(2n) \times p_n \quad (n \in \mathbb{N}).
\]

Proof. This is a particular case of Proposition 9.18.

Note that the above proposition is valid for a more general decision model, viz. one with arbitrary state and action spaces, and a transition law that is merely universally measurable.

Definition. For any decision model the probability on the space of realizations that is generated by an initial probability \(\nu \) and a strategy \(\zeta \) in the sense of Proposition 10.1 will be denoted by \(\mu(\nu, \zeta) \). Probabilities of this kind will be called strategic probabilities.

A strategic probability depends universally measurably on the initial probability. This property, and a kind of reverse of it, are treated in the next three propositions. Also, the set of all strategic probabilities, as well as a set related to it, turn out to be Souslin sets; this is the subject of Propositions 10.5 and 10.6.

Proposition 10.2. For every strategy \(\zeta \) the strategic probability \(\mu(\nu, \zeta) \) depends universally measurably on \(\nu \).

Proof. Due to Propositions 10.1 and 9.18 there exists a universally measurable transition probability \(p \) such that \(\mu(\nu, \zeta) = \nu \times p \) for each initial probability \(\nu \). The result now follows from Lemma 9.16.
As a particular case of Proposition 10.2, for every strategy \(q \) the mapping \(x \mapsto \mu(x, q) \) of the space of initial states into the space of strategic probabilities is universally measurable. The converse also holds:

PROPOSITION 10.3. Let \(\psi: S_1 \to \Lambda \) be a universally measurable mapping of the space \(S_1 \) of initial states into the set \(\Lambda \) of strategic probabilities of a decision model, and let \(\psi(x)(1) = \delta_x \) for every \(x \in S_1 \). Then there is a strategy \(q \) such that for every \(x \in S_1 \) one has \(\psi(x) = \mu(x, q) \).

PROOF. Let \((S, A, G, p, w)\) be the decision model and let \(n \in \mathbb{N} \). When we apply Proposition 9.6 to the space of histories \(H_n \) and the action space \(A_n \), both at time \(n \), and to the probabilities \(\psi(x)(2n) \) \((x \in S_1) \) on \(H_n \times A_n \), we get a universally measurable mapping \(p: (H_n \times A_n)^\sim \times H_n \to A_n \) such that

\[
\psi(x)(2n)(A \times B) = \int_A p(\psi(x)(2n), h; B) \psi(x)(2n-1)(dh)
\]

for each measurable rectangle \(A \times B \subseteq H_n \times A_n \) and for each \(x \in S_1 \). Now for each \(x \in S_1 \) we have \(\psi(x)(2n-1)(1) = \psi(x)(1) = \delta_x \) and therefore by Lemma 9.17 equality (1) is equivalent to

\[
\psi(x)(2n)(A \times B) = \int_A p(\psi(h_1)(2n), h; B) \psi(x)(2n-1)(dh).
\]

Let \(q_n: H_n \to A_n \) be defined by \(q_n(h) = p(\psi(h_1)(2n), h) \). Then \(q_n \) is universally measurable because \(p \) and \(\psi \) are, and (2) can be written as

\[
\psi(x)(2n) = q_n(x)(2n-1), \quad x \in S_1.
\]

The set \(\{ h \in H_n \mid (h, q_n(h)) \in G_n \} \) is the inverse image of the Borel subset \(G_n \) of \(H_n \times A_n \) under the universally measurable mapping \(h \mapsto (h, q_n(h)) \), and as a consequence this set is a universally measurable subset of \(H_n \).

When therefore \(q' \) is an arbitrary strategy and \(q_n \) is redefined by

\[
\begin{align*}
q_n(h) &= q_n(h) \quad \text{if} \quad (h, q_n(h)) \in G_n, \\
q_n(h) &= q_n(h) \quad \text{else},
\end{align*}
\]

then \(q' \) is universally measurable.
then \(q_n \) becomes a universally measurable mapping whose graph is contained in \(\mathcal{G}_n \). Moreover we still have (3): let \(x \in S_1 \). Since \(\varphi(x) \) is strategic there exists a strategy, \(q^X \) say, such that \(\varphi(x)(2m) = \varphi(y)(2m-1) \times q^X_n \). By (3) and Proposition 9.5 this implies that \(q_n(h) = q^X_n(h) \), and hence, that \((h, q_n(h)) \in \mathcal{G}_n \) for \(\varphi(x)(2m-1) \)-almost all \(h \in \mathcal{H}_n \). So the redefinition of \(q_n \) does affect its values on \(\varphi(x)(2m-1) \)-null set only and as a consequence (3) remains valid.

Now letting \(n \) run through \(\mathbb{N} \), we get a sequence \((q_n) \) which obviously is a strategy, \(q \) say. Now for each \(x \in S_1 \) we have \(\varphi(x)(1) = \delta_x \) and \(\varphi(x)(2m+1) = \varphi(y)(2m) \times p_n \) for each \(n \in \mathbb{N} \) because \(\varphi(x) \) is strategic. Together with (3) and Proposition 10.1 this implies that \(\varphi(x) = u(\varepsilon_x, q) \) for each \(x \in S_1 \).

An equivalent formulation of the preceding proposition runs as follows:

Corollary 10.4. For every initial state \(x \) of a decision model let a strategy \(\varphi^X \) be given, and let \(u(\varepsilon_x, \varphi^X) \) depend universally measurably on \(x \). Then a strategy \(q \) exists such that \(u(\varepsilon_x, q^X) = u(\varepsilon_x, q) \) for each initial state \(x \).

In general, the strategy \(q \) in Corollary 10.4 cannot be obtained by simply combining the strategies \(\varphi^X \) in the following way:

\[
q_n(h_1, h_2, \ldots) := q_n(h_1, h_2, \ldots) \quad (n \in \mathbb{N}, h \in \mathcal{H}_n).
\]

in fact the \(q_n \)'s thus obtained may fail to be universally measurable, as the following example shows.

For all \(n \in \mathbb{N} \) let \(S_0 = \mathcal{A}_0 = [0,1] \) and \(p_n = \lambda \), where \(\lambda \) is Lebesgue measure on \([0,1]\). Moreover let, for all \(x \in S_1 \), \(q_n^X = \lambda \) \((n \neq 2)\) and

\[
q_2^X(h_1, h_2, h_3) = \begin{cases}
\delta_0 & \text{if } h_2 = 0 \text{ and } x \in K, \\
\lambda & \text{else},
\end{cases}
\]

where \(K \) is a subset of \([0,1]\) which is not universally measurable. A simple computation gives \(u(\varepsilon_x, q^X) = \delta_x \times \prod_{n \geq 2} \lambda \), which depends measurably on \(x \).

On the other hand
\[h_2 \mid h_1, h_2, h_3 = \delta_0 \text{ if } h_2 = 0 \text{ and } h_1 \in K, \\
q_2(h_1, h_2, h_3) = \lambda \text{ else}, \]

so \(q_2(h_1, h_2, h_3) \) does not depend universally measurably on \((h_1, h_2, h_3)\).

Proposition 10.5. The strategic probabilities on the open \(\mathcal{H} \) of realizations of a decision model constitute a Souslin subset of \(\mathcal{H} \). When the decision model allows combination of strategies, then this subset is \(\sigma \)-convex.

Proof. Let the decision model be \((S, \Lambda, C, p, n)\). For each \(n \in \mathbb{N} \) let \(H_n \) be the space of histories at time \(n \), \(M_n \) the set of probabilities on \(H_n \times \Lambda_n \) that can be decomposed into a marginal on \(H_n \) and a universally measurable transition probability whose graph is contained in \(G_n \), and \(M_n' \) the probabilities on \((H_n \times \Lambda_n) \times S_{n+1}\) that can be decomposed into a marginal on \(H_n \times \Lambda_n \) and the transition probability \(p_n \). Then by Proposition 10.1 the set \(K \) of strategic probabilities can be written as

\[K = \bigcap_{n \in \mathbb{N}} \left\{ \mu \in \mathcal{H} \mid \mu(2n) \in M_n \cap \{ \mu \in \mathcal{H} \mid \mu(2n+1) \in M_n' \} \right\}. \]

Let \(n \in \mathbb{N} \). Proposition 9.9 implies that \(M_n \) is a Souslin subset of \((H_n \times \Lambda_n)^{\omega} \) and it follows from Proposition 9.11 that \(M_n \) is \(\sigma \)-convex when combination of strategies is allowed. Since \(\nu = \xi(2n) \) is a measurable linear mapping of \(\mathcal{H} \) into \((H_n \times \Lambda_n)^{\omega} \), the set \(\{ \mu \in \mathcal{H} \mid \mu(2n) \in M_n \} \) is a Souslin subset of \(\mathcal{H} \) which, in addition, is \(\sigma \)-convex provided that combination of strategies is allowed.

Next let \(G_n' \) be the graph of \(p_n \). Then, by Proposition 7.3, \(G_n' \) is a measurable subset of \((H_n \times \Lambda_n)^{\omega} \times S_{n+1} \) and each of the sets \(\{ \lambda \in S_{n+1} \mid (\lambda, \lambda) \in G_n' \} \) \((\lambda \in H_n \times \Lambda_n) \) is a singleton and therefore is \(\sigma \)-convex. Moreover, \(M_n' \) can be described as the set of probabilities on \((H_n \times \Lambda_n)^{\omega} \times S_{n+1} \) that can be decomposed into a marginal on \(H_n \times \Lambda_n \) and a transition probability whose graph is contained in \(G_n' \). As a consequence, we can repeat the argument above and conclude that \(\{ \mu \in \mathcal{H} \mid \mu(2n+1) \in M_n' \} \) is a Souslin (in fact measurable) subset of \(\mathcal{H} \) that is \(\sigma \)-convex.

From the foregoing it is easily deduced that \(K \) has the desired properties. \(\square \)
PROPOSITION 10.6. Let S_1 be the space of initial states and H the space of realizations of a decision model. Let Π be the subset of $S_1 \times H$ consisting of the pairs (v, u) for which a strategy q exists such that $u = v(q)$. Then Π is a Souslin subset of $S_1 \times H$.

PROOF. Let Σ be the set of strategic probabilities on H and let

$$\Sigma := \{(v, u) \in S_1 \times H \mid u = v(q)\}.$$

Then $\Pi = (S_1 \times \Sigma) \cap \Pi$. Now Π is a Souslin subset of H by Proposition 10.5 and Σ is a measurable subset of $S_1 \times H$, being the graph of the measurable mapping $u = v(q)$ of H into the countably separated space S_1 (see Propositions 7.3 and 7.7). The foregoing implies that Π is a Souslin subset of $S_1 \times H$.

§ 11. The expected utility and optimal strategies

The object of interest in dynamic programming is the expected utility. We first define this quantity and prove its measurability.

DEFINITION. Let a decision model be given with space of realizations H and utility u. For every initial probability v and for each strategy q we define

$$w(v, q) := \int_H u(v, q) \, dH.$$

The function w is called the expected utility. Also, for every initial probability v we define

$$w(v) := \sup_q w(v, q),$$

where the supremum is taken over all strategies. The function v is called the maximal expected utility.

PROPOSITION 11.1. The maximal expected utility v is a Souslin function, and for each strategy q the expected utility $w(v, q)$ is a universally measurable function of v.
PROOF. Let the Souslin subset \mathcal{I} of $S_1 \times \mathcal{H}$ be defined as in Proposition 10.6 and let $s: \mathbb{R} \to \mathcal{H}$ be defined by $s(\nu, q) = \int u \, du$, where u is the utility. Then, by Proposition 6.2, s is a Souslin function because u is, and for each $\nu \in S_1$ we have $s(\nu) = \sup \{ f(\nu, q) : (\nu, q) \in \mathcal{I} \}$. Application of the exact selection theorem (Proposition 7.1) yields the desired result.

Also it follows from the definition of u and Proposition 6.1 that $w(\nu, q)$ is a universally measurable (in fact, Souslin) function of $u(\nu, q)$. By Proposition 10.2 this implies that $w(\nu, q)$ depends universally measurably on ν.

In the rest of this section we consider optimal strategies, i.e., strategies for which the expected utility equals the maximal expected utility. In particular the question is raised whether optimality, or a prescribed optimality deficit, can be realized simultaneously for all initial probabilities by one and the same strategy. A second topic will be the linear dependence of the (maximal) expected utility on the initial probability. We conclude with a derivation of the optimality equation.

DEFINITION. Let ν be an initial probability and q a strategy for a decision model. Then q is called ν-optimal if $w(\nu, q) = v(\nu)$.

It may happen that for an initial probability ν no ν-optimal strategies exist (see the example following Proposition 11.4).

PROPOSITION 11.2. Let h be a universally measurable function on the space S_1 of initial states of a decision model satisfying

\begin{align*}
\forall (x, v) \in S_1 \times v(S_1) : h(x) &\leq v(x), \\
\forall (x, q) \in S_1 \times \mathcal{H} : h(x) &\geq q(x).
\end{align*}

Then there exists a strategy q such that

i) $w(x, q) = h(x)$ for each $x \in S_1$;
ii) q is δ_x-optimal for each $x \in S_1$ for which a δ_x-optimal strategy exists.

PROOF. Let $\mathcal{S} = S_1 \times \mathcal{H}$ be defined as in Proposition 10.6 and let $\mathcal{S}' \subset S_1 \times \mathcal{H}$ be the inverse image of the Souslin set \mathcal{S} under the measurable mapping.
$(x,u) = (\delta_\infty u)_{\infty}$ of $S_1 \times N$ into $S_1 \times N$. Then Π' is a Souslin subset of $S_1 \times N$ and for all $(x,u) \in S_1 \times N$ we have $(x,u) \in \Pi'$ iff $u = u(\delta_\infty u, q)$ for some strategy q.

Moreover, let $f: S_1 \times N \to N$ be defined by $f(x,u) = \int u \, dx$, where u is the utility. Then f is a Souslin function and for each $x \in S_1$ we have $v(\delta_\infty u) = \sup \{ f(x,u) \mid u: (x,u) \in \Pi' \}$. Now from the exact selection theorem (Proposition 7.1) the existence follows of a universally measurable mapping $v: S_1 \to N$ the graph of which is contained in N, and such that $f(x, v(x)) \geq h(x)$ for each $x \in S_1$, and $f(x, v(x)) = v(\delta_\infty u, q) = u(\delta_\infty u, q)$. Consequently $f(x, v(x)) = \int u(\delta_\infty u, q) \, dx = v(\delta_\infty u, q)$. The definition of v now implies that q has the properties stated in the proposition.

At every instant of time in a decision process one knows both the state the system is in, and (given the strategy) the probability distribution of the state the system will enter at the next instant of time. Due to this alternation of states and probabilities, either a quantity is most naturally expressed as a function of states or as a function of probabilities. The following proposition gives the connection between the two representations for the (maximal) expected utility. Note that representing a state x by the probability $\delta_\infty u$ amounts merely to an identification of non-separated points.

Proposition 11.3. Let v be an initial probability for a decision model.

1) When $-\infty < v(u)$, then $x \equiv v(\delta_\infty u)$ is quasi-integrable with respect to v and $\int v(\delta_\infty u) \, dx = v(\delta_\infty u)$.

2) $\int v(\delta_\infty u) \, dx = \sup \int v(\delta_\infty u, q') \, dx$, where the supremum is taken over all strategies q'.

3) When q is a strategy such that the utility is quasi-integrable with respect to $v(u, q)$, in particular, when $v(u, q) > -\infty$, then $x \equiv v(\delta_\infty u, q)$ is quasi-integrable with respect to v and $\int v(\delta_\infty u, q) \, dx = v(u, q)$.

4) When the utility is quasi-integrable with respect to every strategic probability, then $\int v(\delta_\infty u) \, dx = v(\delta_\infty u)$.
PROOF. The order in which we shall prove the various parts of the proposition is: (ii), (iii), (iv), and (i).

(ii) Suppose that \(\int v(\delta_x) \nu(dx) \to -\infty \). As by Proposition 11.1, \(v(\delta_x) \) is a universally measurable function of \(x \), it follows from Proposition 11.2 that a sequence \((q^n)_{n \in \mathbb{N}} \) of strategies exists such that for each initial state \(x \) and \(n \in \mathbb{N} \)

\[
\omega(\delta_x, q^n) \begin{cases} \nu(\delta_x) - \nu^{-1} & \text{if } \nu(\delta_x) < \nu^{-1} \\ > & \text{else} \\
\end{cases}.
\]

Then the sequence \((x \mapsto \omega(\delta_x, q^n))_{n \in \mathbb{N}} \) of functions converges to the function \(x \mapsto \nu(\delta_x) \), while the integrable function \(x \mapsto \min \{\nu(\delta_x) - 1, 0\} \) is a common lower bound. So by Fatou's lemma (see [Ash] 1.6.8)

\[
\int v(\delta_x) \nu(dx) \leq \liminf_{n \to \infty} \int \omega(\delta_x, q^n) v(dx) \leq \sup_{q'} \int v(\delta_x, q') v(dx).
\]

This inequality is satisfied also when the left hand member equals \(-\infty \). The reverse inequality on the other hand is a direct consequence of \(\nu(\delta_x) \geq \omega(\delta_x, q') \).

(iii) From the definition of \(u(v, q) \) it follows that for every measurable cylinder \(C \) we have \(u(v, q)(C) = \int u(\delta_x, q)(C) v(dx) \). This results extends to integrals of positive functions in the usual way. In particular, one has for the utility \(u \)

\[
(*) \quad u(v, q) = \int u^+(v, q) \, \nu(dx) = \int u^-(v, q) \, \nu(dx) = \left(\int u^+(\delta_x, q) v(dx) \right) - \left(\int u^-(\delta_x, q) v(dx) \right).
\]

As \(u \) is quasi-integrable with respect to \(\nu(v, q) \), at least one of the repeated integrals is finite, say the one of \(u^- \) for definiteness. Then \(\int u^- \, \omega(\delta_x, q) \) is finite for \(\nu \)-almost all \(x \), and, as a function of \(x \), is integrable with respect to \(\nu \). Hence the last expression in \((*) \) can be written as
\[
\int \left[\int u^+ \, d\nu(\delta_x,q) - \int u^- \, d\nu(\delta_x,q) \right] v(dx),
\]

which in turn equals \(\int \nu(\delta_x,q) v(dx) \).

iv) It follows from ii) and iii) that

\[
\int \nu(\delta_x) v(dx) = \sup_{q'} \int \nu(\delta_x,q') v(dx) = \sup_{q'} \nu(v,q') = v(v).
\]

i) For each \(n \in \mathbb{N} \) let the function \(u^N \) be defined on the space of realizations by \(u^N(h) = \min \{ u(h), n \} \) and let \(v^N \) be the maximal expected utility corresponding to the utility \(u^N \). Then for every \(n \) the function \(v^N \) is quasi-integrable with respect to every strategic probability and it follows from iv) that \(v^N(v) = \int v^N(\delta_x) v(dx) \). Also for every initial distribution \(\lambda \) we have

\[
v(\lambda) = \sup_n w(\lambda,n) = \sup_n \int u^N(\lambda, q) = \sup_n \int u^N(\lambda, q) = \sup_n \int u^N(\lambda, q) = \sup_n v^N(\lambda).
\]

So

\[
\Rightarrow \nu(v) = \sup_n v^N(v) = \sup_n \int v^N(\delta_x) v(dx) = \int v^N(\delta_x) v(dx)
\]

where the third equality follows from the fact that \(v^N(\delta_x) \) is increasing in \(n \) and that \(\Rightarrow \nu(v) = \sum v^N(\delta_x) v(dx) \) for sufficiently large \(n \). ☐

The condition on the utility in iii) cannot be omitted. As an example we consider a decision model for which \(\mathbb{S}_1 = (0,1) \), \(A_1 = \mathbb{R} \) and \(\nu(x,y,...) = y \). Take a strategy \(q \) for which \(q_1(x)((x^{-1})) = \frac{1}{2} \) and \(q_1(x)((-x^{-1})) = \frac{1}{2} \) (\(x \in \mathbb{S}_1 \)) and for the initial probability \(\nu \) take Lebesgue measure on \((0,1)\). Then \(\omega(\delta_x,q) = 0 \) for all \(x \) and \(\omega(\nu,q) = -w \), so \(\omega(\nu,q) \neq \int \nu(\delta_x,q) v(dx) \).
With the aid of Proposition 11.3 we can now extend the results in Proposition 11.2 to arbitrary initial probabilities.

PROPOSITION 11.4. Let the utility of a decision model be quasi-integrable with respect to every strategic probability and let combinations of strategies be allowed. Then the expected utility \(w \) and the maximal expected utility \(v \) are bounded on at least one side. Then moreover \(\epsilon > 0 \) and \(\eta: S_1 \to (0, \omega) \) is a universally measurable function on the space \(S_1 \) of initial states, then there is a strategy \(q \) such that

i) \(w(x, q) = v(x) = \eta(x) \) for each initial state \(x \),

ii) \(w(v, q) \geq v(\nu) - \epsilon \) for each initial probability \(v \),

iii) \(q \) is \(v \)-optimal for each initial probability \(v \) for which a \(v \)-optimal strategy exists.

PROOF. Suppose that the function \(w \) is unbounded on both sides. Then for each \(m \in \mathbb{N} \) there exists a strategic probability \(\mu_m \) such that \(\int u \, d\mu_m > 2^m \) and therefore such that \(\int u^+ \, d\mu_m > 2^m \), where \(u \) is the utility. When \(\nu := \sum_{m=1}^{\infty} 2^{-m} \mu_m \), then by Proposition 10.5 \(\nu \) is a strategic probability and

\[
\int u^+ \, d\nu > \sum_{m=1}^{\infty} 2^{-m} 2^m = = .
\]

In the same way one can show that a strategic probability \(u' \) exists such that \(\int u^u \, d\nu = \). Consequently, the utility \(u \) is not quasi-integrable with respect to the strategic probability \(\int (u + u') \), which contradicts our assumptions. The function \(v \) therefore is bounded on at least one side. The definition of \(v \) now implies that \(v \) is bounded on the same side.

In the proof of the remaining part of the proposition we suppose, without loss of generality, that \(\eta(x) < c \) for every \(x \in S_1 \). Let \(h: S_1 \to \mathbb{R} \) be defined by

\[
\begin{align*}
\quad & \quad \quad \quad \quad \quad = v(x) - \eta(x) \quad \text{if} \quad v(x) \text{ is finite,} \\
\quad & \quad \quad \quad \quad \quad = -\infty \quad \ quad r
To prove i) we merely have to show that a δ_X-optimal strategy exists for every $x \in S_1$ satisfying $\nu(\delta_x) = \nu$. Therefore, let $x \in S_1$ and $\nu(\delta_x) = \nu$. Moreover, for each $n \in \mathbb{N}$ let q^n be a strategy such that $w(\delta_x, q^n) \geq 2^n$ and let $u := \sum_{n \in \mathbb{N}} 2^{-n} u(\delta_x, q^n)$. Then u is a strategic probability and

$$u^{(1)} = \sum_{n \in \mathbb{N}} 2^{-n} u(\delta_x, q^n) = \sum_{n \in \mathbb{N}} 2^{-n} \delta_x = \delta_x,$$

so $u = u(\delta_x, q')$ for some strategy q'. With utility u we now have

$$\int u^+ du(\delta_x, q') = \sum_{n \in \mathbb{N}} 2^{-n} \int u^+ du(\delta_x, q^n) \geq \sum_{n \in \mathbb{N}} 2^{-n} \int u du(\delta_x, q^n) = \sum_{n \in \mathbb{N}} 2^{-n} w(\delta_x, q^n) = \sum_{n \in \mathbb{N}} 2^{-n} 2^n = \nu$$

and since u is quasi-integrable with respect to $u(\delta_x, q')$ this implies that $w(\delta_x, q') = \nu$. So q' is δ_x-optimal and thereby i) has been proved.

Next let ν be an initial probability. For every $x \in S_1$ we have $\nu(\delta_x) < \nu$ and therefore $w(\delta_x, q) \geq \nu(\delta_x) - \nu$ by i). From this inequality ii) can be obtained by integration with respect to ν and application of Proposition 11.3.

To prove iii) we first consider an initial probability ν such that $\nu(\nu) = \nu$ is infinite. From ii) it then follows that $w(\nu, q) = \nu(\nu)$ and hence that q is ν-optimal. Next let $\nu(\nu)$ be finite and suppose that a ν-optimal strategy q' exists. Then by Proposition 11.3

$$\int \nu(\delta_x, q') \nu(dx) = \nu(\nu, q') = \nu(\nu) = \int \nu(\delta_x) \nu(dx).$$

From the finiteness of these integrals together with the inequalities $w(\delta_x, q') \leq \nu(\delta_x) (x \in S_1)$ we conclude that $w(\delta_x, q') = \nu(\delta_x)$ for ν-almost all $x \in S_1$. So for ν-almost all $x \in S_1$ a δ_X-optimal strategy exists and hence the equality $w(\delta_x, q) = \nu(\delta_x)$ holds, as follows from the definition of q. This in turn implies by Proposition 11.3 that

$$w(\nu, q) = \int w(\delta_x, q) \nu(dx) = \int \nu(\delta_x) \nu(dx) = \nu(\nu),$$

so q is ν-optimal. □
The preceding proposition cannot be essentially improved by allowing
ε to depend on n, as the following example shows.

Consider a decision model for which $S_1 := \{0,1\}$, $A_1 := \{0,1\}$ and
$u(x,y,z,\ldots) := y$. Then for every initial probability n and for every
strategy q we have

$$ u(n,q) = u(\{0\}) \left[\int yq_1(0)(dy) + u(\{1\}) \int yq_1(1)(dy) \right] \leq $$

$$ \leq \max \left\{ \left[\int yq_1(0)(dy), \int yq_1(1)(dy) \right] \right\}, $$

and the last expression is smaller than 1 and independent of n. Moreover
$u(n) = 1$. So, for every strategy q, $u(n,q)$ is bounded away from $u(\omega)$
uniformly in n.

We conclude this section with a derivation of the optimality equation.
For the formulation we need a transformation of decision models.

Definition. The contraction of a decision model (S,A,G,p,n) is the decision
model $(\tilde{S},\tilde{A},\tilde{G},\tilde{p},\tilde{n})$ defined by

1) $\tilde{S}_1 = S_1 \times A_1 \times S_2$;

2) $\tilde{S}_{n+1} = \tilde{S}_{n+2} \times \tilde{S}_n \times A_{n+1} \times \tilde{S}_{n+1}$, $\tilde{G}_{n+1} = G_n$ $\left(n \in \mathbb{N} \right)$;

3) $\tilde{n} = n$.

For every strategy q for the given model the strategy \tilde{q} for the contracted
model is defined by $\tilde{q}_n = q_{n+1}$ $\left(n \in \mathbb{N} \right)$.

Note that in the above definition of \tilde{S}, \tilde{G} and \tilde{n} we have tacitly
identified domains of definitions like $(S_1 \times A_1 \times S_2) \times A_2 \times S_3 \times \ldots$ and
$S_1 \times A_1 \times S_2 \times A_2 \times S_3 \times \ldots$.

The contraction operation can be repeated a number (say n) of times;
this results in a decision model having as its initial states the histories up
to time n of the original model. To all these contracted models the
results derived so far apply.
PROPOSITION 11.5. Let \(\nu \) be an initial probability and let \(\theta \) be a strategy for a decision model with transition law \(p \). Moreover, let \(\theta \) and \(\theta' \) be the (maximal) expected utility for the contraction of the model. Then

i) \(\nu(\nu, \nu) = \Theta(\nuq_1^*, p_1, \theta) \).

ii) (Optimality equation) \(\nu(\nu) = \sup_{\theta'} \Theta(\nuq_1^*, p_1, \theta) \), where the supremum is over all strategies \(\theta' \).

iii) When \(\theta \) is \(\nu \)-optimal, then \(\theta \) is \(\nuq_1^*, p_1 \)-optimal and \(\nu(\nu) = \Theta(\nuq_1^*, p_1) \).

PROOF.

i) As a consequence of the definition of \(\theta \) and of Proposition 10.1 we have \(u(\nu, \nu) = \hat{u}(\nuq_1^*, p_1, \theta) \), where \(\hat{u} \) denotes the strategic probabilities of the contracted model. Consequently, for utility \(u \),

\[
\nu(\nu, \nu) = \int u d\nu(\nu, \nu) = \int \delta \hat{u}(\nuq_1^*, p_1, \theta) = \Theta(\nuq_1^*, p_1, \theta) .
\]

ii) From i) we deduce

\[
\nu(\nu) = \sup_{\theta'} \nu(\nu, \theta') = \sup_{\theta'} \Theta(\nuq_1^*, p_1, \theta') = \\
= \sup_{\theta'} \sup_{\theta_1} \Theta(\nuq_1^*, p_1, \theta') = \Theta(\nuq_1^*, p_1) .
\]

iii) From ii), the \(\nu \)-optimality of \(\theta \), and i) we conclude

\[
\Theta(\nuq_1^*, p_1) = \Theta(\nuq_1^*, p_1, \theta) = \nu(\nu) = \Theta(\nuq_1^*, p_1) = \\
= \Theta(\nuq_1^*, p_1, \theta) \leq \Theta(\nuq_1^*, p_1) .
\]

Hence the result. \(\Box \)

As in the case of Proposition 10.1 the result above is valid for a more general decision model: arbitrary state and action spaces, and a transition law and utility that are merely universally measurable.
REFERENCES

INDEX

action space 75
admissible 30
admissible probability 76
analytic ν-algebra 34
 - space 34
 - topological space 54
Borel set 5
class 1
collection 1
combination of strategies 76
completion 10
concentrated at a point 5
conditional expectation 62
contraction 88
cordinate 3
countable 1
 - convex combination 66
countably generated 5
 - separated 5
cylinder 4
decision model 73
decomposition of a probability 57
deterministic probability 69
Dynkin class 2
Dynkin's theorem 2
Exact selection theorem 35
expected utility 81
finite intersection property 25
First separation theorem 50
function 6
history space 75
initial probability 76
 - state 75
inner regularity 26
integral 31
Jonescu-Tulcea's theorem 70
isomorphic embedding 40
kernel 14
limit measurable 23
 - ν-algebra 23
marginal (probability) 4, 9
maximal expected utility 81
measurable cylinder 4
 - (sub)set 3
optimal strategy 82
optimality equation 89
positive function 6
probability 4
product probability 9
 - ν-algebra 3
 - space 3
quasi-integrable 31
realization space 75
rectangle 4
restriction of a probability 9, 47
right inverse 40
semicompact 25
 - algebra 30
separated 5
separating 5, 49
ν-additive 30
ν-convex 66
Souslin class 14
 - function 19
 - operation 16
 - scheme 14
 - (sub)set 14
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>state space</td>
<td>75</td>
</tr>
<tr>
<td>strategic probability</td>
<td>77</td>
</tr>
<tr>
<td>strategy</td>
<td>76</td>
</tr>
<tr>
<td>strictly measurable</td>
<td>40</td>
</tr>
<tr>
<td>subspace</td>
<td>3</td>
</tr>
<tr>
<td>trace</td>
<td>3</td>
</tr>
<tr>
<td>λ^c, $\lambda \setminus B$</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_d, \lambda_s, \lambda_t, \lambda_m, \sigma$</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda</td>
<td>\sigma$</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
</tr>
<tr>
<td>(E, E)</td>
<td>3</td>
</tr>
<tr>
<td>E, \tilde{E}, $(E, E)^-$</td>
<td>7</td>
</tr>
<tr>
<td>$E(E)$</td>
<td>6</td>
</tr>
<tr>
<td>$E \times F$, $E \oplus F$, $A \times B$</td>
<td>4</td>
</tr>
<tr>
<td>$\Pi_{i \in I} F_i$, $\Phi_{i \in I} F_i$</td>
<td>3</td>
</tr>
<tr>
<td>γ^T</td>
<td>4</td>
</tr>
<tr>
<td>L</td>
<td>23</td>
</tr>
<tr>
<td>S</td>
<td>14</td>
</tr>
<tr>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td>x</td>
<td>5</td>
</tr>
<tr>
<td>transition law</td>
<td>76</td>
</tr>
<tr>
<td>- probability</td>
<td>57</td>
</tr>
<tr>
<td>universal completion</td>
<td>10</td>
</tr>
<tr>
<td>universally measurable mapping</td>
<td>12</td>
</tr>
<tr>
<td>- set</td>
<td>10</td>
</tr>
<tr>
<td>utility</td>
<td>76</td>
</tr>
</tbody>
</table>

Terms and page numbers.
SAMENVATTING

In de dynamische programmering beschouwt men een systeem dat een reeks toestanden doorloopt en waarbij men elke overgang naar een nieuwe toestand kan beïnvloeden. De nieuwe toestand hangt dan af van de toestand waarin het systeem zich bevond en van de ondernomen actie, maar niet eenduidig: slechts de kansverdeling van de nieuwe toestand wordt bepaald door oude toestand en actie. Verder is voor elke ontwikkeling van het systeem in de loop der tijd, d.w.z. voor elke reeks van toestanden en acties die kan optreden, een opbrengst gedefinieerd; dit is een getal dat aangeeft hoe gecust de betreffende ontwikkeling is. Men tracht nu de acties te kiezen, dat de verwachte opbrengst zo groot mogelijk is. In het algemeen zal dit tot gevolg hebben dat de op elk tijdstip te kiezen actie zal afhangen van de toestand waarin het systeem zich op dat tijdstip bevindt. Een rij van dergelijke kiesvoorschriften, één voor elk tijdstip, noemt men een strategie.

Wanneer het aantal toestanden waarin het systeem zich kan bevinden en het aantal mogelijke acties beide eindig of aftelbaar oneindig zijn en wanneer bovendien slechts eindig veel overgangen van het systeem beschouwd worden, dan is de verwachte opbrengst zonder meer gedefinieerd. In andere gevallen is dit niet noodzakelijk het geval en kunnen zich meetbaarheidsproblemen voordoen. Men heeft echter ontdekt dat deze problemen niet optreden als men maatbare strategieën en een maatbare opbrengst heeft en als de versamelingen van toestanden en acties analytische topologische ruimten zijn.

Een onbevredigende kant van het gebruik van analytische ruimten is dat topologische middelen worden aangewend om maattheoretische moeilijkheden te vermijden. In dit proefschrift nu, ontwikkelen we een maattheoretisch alternatief voor de analytische ruimte en laten zien hoe het kan worden toegepast op dynamische programmering. Het daarbij beschouwde model voor dynamische programmering is van zeer algemene aard.

Het proefschrift is verdeeld in drie hoofdstukken. In het eerste hoofdstuk wordt de benodigde maattheorie ontwikkeld; slechts elementaire voorbemiss is vereist voor lezing van dit gedeelte. Hoofdstuk II bevat de theorie van analytische ruimten voor zover deze van belang is voor de
toepassing op dynamische programmering in Hoofdstuk III. Ook voor lezing van deze hoofdstukken is geen speciale voorkennis nodig, hoewel eenig begrip van dynamische programmering de appreciatie van het laatste hoofdstuk zal bevorderen.
CURRICULUM VITAE

De schrijver van dit proefschrift werd op 19 mei 1939 geboren te Hoorn (N.W.) en in 1956 behaalde hij het diploma H.B.S.-b aan het Sint-Woronfridus-lyceum aldaar. Vervolgens studeerde hij aan de Universiteit van Leiden en slaagde er in januari 1961 voor het candidaatsexamen "natuur- en wiskunde met sterrenkunde". De studie werd voortgezet aan de Universiteit van Amsterdam en in maart 1969 werd hier (cum laude) het doctoraal examen afgelegd met hoofdvak theoretische natuurkunde en bijvakken wiskunde en mechanica. Hierna was hij gedurende vier jaar werkzaam bij het Mathematisch Instituut van de Universiteit van Amsterdam en is sinds augustus 1973 als wetenschappelijk medewerker verbonden aan de onderafdeling der wiskunde en informatica van de Technische Hogeschool te Eindhoven, in het bijzonder belast met de verzorging van onderwijs in de wiskundige modelvorming.
STELLINGEN

I. De vraag of in elke Blackwell-ruimte de klasse der Souslin-verbouw-
lingen gescheiden wordt door die door meetbare verzamelingen dient
bevestigd te worden beantwoord.
Litt.: Hoffman-Jørgensen, "The theory of analytic spaces", II.11.3B.

II. In een afgetalsbaar voorgbrachte meetbare ruimte kunnen versies van de
Riesz-Nikodým-afgeleide van begrenste maten zodanig gekozen worden dat

\[
\frac{d\nu}{d\mu}(x)
\]

een meetbare functie is van \(x, \nu \) en \(\mu \) terzoden.

III. Het formalisme van de niet-standaard analyse sluit aan bij de intuitie
waar het oneindig grote en oneindig kleine getallen betreft. Het
onderscheid tussen interne en externe objecten niet echter elke in-
tuitive achtergrond.

IV. Het al dan niet consistent zijn van het geheel van definities en
stellingen in een wiskundige tekst mag niet afhankelijk zijn van de
aanvullende tekst.

V. Het idee dat enzoomelingen en equivalentieklassen van meetbare
functies slechts voor complete maatruncen bruikbaar zijn is onjuist.
Het op grond van dit idee completeren van een maatruimte is dan ook
onnodig en bovendien ongewenst, daar bij completering van een
van de algebra nuttige eigenschappen verloren kunnen gaan.

VI. Een goed leraar baseert zijn onderwijs mede op de denkfouten van
zijn pupil.". Bij gebruik van een computer voor onderwijs is dit in
tegenstelling mogelijk.

VII. Toelichting bij educatieve films dient te worden uitgebracht door
leraar die het behandelde onderwerp goed kent.

VIII. De strategie genoemd in Propositiel.6.iili van dit proefschrift is
zo optimaal mogelijk.